[解析]
解:(1)x2﹣64x+1008
=x2﹣2×32x+322﹣322+1008
=(x﹣32)2﹣16
=(x﹣32+4)(x﹣32﹣4)
=(x﹣28)(x﹣36);
(2)y=﹣x2+6x+1200
=﹣(x2﹣6x)+1200
=﹣(x2﹣2×3x+32﹣32)+1200
=﹣[(x﹣3)2﹣9]+1200
=﹣(x﹣3)2+1209,
当x=3时,﹣(x﹣3)2值最大,原式最大值为1209;
(3)9m2+8n2+12mn﹣24n+45
=9m2+12mn+4n2+4n2﹣24n+36+9
=(3m+2n)2+(2n﹣6)2+9,
当2n﹣6=0时,n=3,3m+2n=0,m=﹣2时,(3m+2n)2与(2n﹣6)2有最小值,原式最小值为9.