首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

169312. (2025•铁一中学•高二上期末) 如图,在四棱锥ABCDE中,ABACCD=2BE=4,BECDCDCBABAC,平面ABC⊥平面BCDEOBC中点.
(1)证明:AO⊥平面BCDE
(2)求平面ABC与平面ADE夹角的余弦值;
(3)线段AC上是否存在一点Q,使OQ∥平面ADE?如果不存在,请说明理由;如果存在,求的值.

共享时间:2025-02-12 难度:3
[考点]
直线与平面平行,直线与平面垂直,空间向量法求解二面角及两平面的夹角,
[答案]
(1)证明过程请见解答;(2);(3)存在,
[解析]
(1)证明:因为ABACOBC中点,所以AOBC
又平面ABC⊥平面BCDE,平面ABC∩平面BCDEBCAO⊂平面ABC
所以AO⊥平面BCDE
(2)解:以C为坐标原点,CBCD所在直线分别为xy轴,平行于AO的直线为z轴,建立如图所示的空间直角坐标系,

所以
设平面ADE的法向量为=(xyz),则
x=1,可得
易知平面ABC的一个法向量为
所以cos<>=
所以平面ABC与平面ADE夹角的余弦值为
(3)解:由(2)知平面ADE的法向量为
Qa,0,a),a>0,则
OQ∥平面ADE,则
所以,解得
所以
所以
故存在点Q,使OQ∥平面ADE,此时

[点评]
本题考查了"直线与平面平行,直线与平面垂直,空间向量法求解二面角及两平面的夹角,",属于"难典题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
166525. (2024•城关中学•高二上二月) 已知四棱柱ABCDA1B1C1D1中,底面ABCD为梯形,ABCDA1A⊥平面ABCDADAB,其中ABAA1=2,ADDC=1.NB1C1的中点,MDD1的中点.
(1)求证D1N∥平面CB1M
(2)求平面CB1M与平面BB1CC1的夹角余弦值.

共享时间:2024-12-24 难度:2 相似度:1.67
166506. (2024•铁一中学•高二上二月) 如图,在四棱柱ABCDA1B1C1D1中,底面ABCD为矩形,A1B1的中点,且EBEDC1EBE
(1)证明:①C1E⊥平面BDE
EAEC
(2)若AB1=3,求平面CDE与平面BCE的夹角的余弦值.

共享时间:2024-12-24 难度:2 相似度:1.67
166757. (2024•建大附中•一模) 如图,在九面体ABCDEFGH中,平面AGF⊥平面ABCDEF,平面AFG∥平面HCDAB=6,底面ABCDEF为正六边形.
(1)证明:GH∥平面ABCDEF
(2)证明:GH⊥平面AFG
(3)求GE与平面ABG所成角的正弦值.

共享时间:2024-03-13 难度:3 相似度:1.34
166447. (2024•西工大附中•高三上二月) 已知边长为4的菱形ABCD(如图1),BD相交于点OE为线段AO上一点,将三角形ABD沿BD折叠成三棱锥ABCD(如图2).
(1)证明:BDCE
(2)若三棱锥ABCD的体积为8,二面角BCEO的余弦值为,求OE的长.

共享时间:2024-12-24 难度:1 相似度:1.33
167807. (2024•西安一中•二模) 如图所示,在四棱锥PABCD中,PA⊥平面ABCDADBCADCD,且,|PA|=2.
(1)求三棱锥BACP的体积;
(2)求证:ABPC

共享时间:2024-03-29 难度:2 相似度:0.83
167349. (2023•长安区一中•高三上二月) 如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AFPC于点FFECD,交PD于点E
(1)证明:CF⊥平面ADF
(2)求二面角DAFE的余弦值.

共享时间:2023-12-15 难度:2 相似度:0.83
167452. (2023•雁塔二中•高二上二月) 如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.
(1)证明:MN∥平面C1DE
(2)求二面角AMA1N的正弦值.

共享时间:2023-12-24 难度:2 相似度:0.83
167602. (2023•新城一中•高二上二月) 如图,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCDEPD的中点.
(1)证明:PB∥平面AEC
(2)若AB=1,AD=2,AP=2,求二面角DAEC的平面角的余弦值.

共享时间:2023-12-19 难度:2 相似度:0.83
167670. (2024•西安中学•一模) 如图,在三棱柱ABCA1B1C1中,直线C1B⊥平面ABC,平面AA1 C1C⊥平面BB1C1C
(1)求证:ACBB1
(2)若ACBCBC1=2,在棱A1B1上是否存在一点P,使二面角PBCC1的余弦值为?若存在,求的值;若不存在,请说明理由.

共享时间:2024-03-11 难度:2 相似度:0.83
167716. (2024•西安一中•五模) 如图,四棱锥PABCD中,PA⊥平面ABCDABCDPAAB=2CD=2,∠ADC=90°,EF分别为PBAB的中点.
(Ⅰ)求证:CE∥平面PAD
(Ⅱ)求点B到平面PCF的距离.

共享时间:2024-05-13 难度:2 相似度:0.83
167739. (2024•西安一中•四模) 如图,几何体ABCDEF为三棱台.
(1)证明:DE∥平面ABF
(2)已知平面ACFD⊥平面DEFACBCACADCF=6,BC=3,DF=12,求三棱台ABCDEF的体积.
参考公式:台体的体积,其中S1S2分别为台体的上底面面积、下底面面积,h为台体的高.

共享时间:2024-04-26 难度:2 相似度:0.83
167762. (2024•西安一中•三模) 如图,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABCABBCDAC的中点,AA1AB=2,BC=3.
(1)求三棱柱ABCA1B1C1的表面积;
(2)求证:AB1∥平面BC1D

共享时间:2024-04-15 难度:2 相似度:0.83
167785. (2024•西安一中•三模) 如图,在斜三棱柱ABCA1B1C1中,ABBCMAC的中点,MB1AB
(1)证明:MC1AB
(2)若,求直线B1C与平面MB1C1所成角的正弦值.

共享时间:2024-04-07 难度:2 相似度:0.83
261. (2014•陕西省•真题) 四面体ABCD及其三视图如图所示,平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH
)求四面体ABCD的体积;
)证明:四边形EFGH是矩形.
                                                                                                               
 
共享时间:2014-07-07 难度:3 相似度:0.83
167900. (2024•西安八十九中•三模) 如图,已知AC是圆O的直径,PA⊥平面ABCDEPC的中点,∠DAC=∠AOB
(1)证明:BE∥平面PAD
(2)求证:平面BEO⊥平面PCD

共享时间:2024-04-02 难度:2 相似度:0.83

lk@dyw.com

2025-02-12

高中数学 | 高二上 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 16
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!