首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

172205. (2023•交大附中•高一下期中) 如图,在四棱锥PABCD中,ABCDAB=1,CD=3,AP=2,,∠PAD=60°,AB⊥平面PAD,点M是棱PC上的动点.
(1)证明:APDM
(2)设,求当AP∥平面BDM时λ的值.

共享时间:2023-05-18 难度:2
[考点]
直线与平面平行,直线与平面垂直,
[答案]
(1)证明过程见解析;
(2)
[解析]
解:(1)证明:∵AB⊥面PADABCD
CD⊥面PAD,所以CDAP
由在△APD中,由余弦定理得
解得AD=4,
AD2AP2+PD2,∴APPD,又∵PDCDD
AP⊥面PCD,又DM⊂面PCD
APDM
(2)连结ACBD交于点N,连MN
AP∥平面BDMAP⊂平面APC,面BDM∩面APCMN
APMN,故
在梯形ABCD中,,∴
AP∥平面BDM时λ的值为

[点评]
本题考查了"直线与平面平行,直线与平面垂直,",属于"易错题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
168918. (2021•高陵一中•二模) 如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是半圆弧上异于CD的点.
(Ⅰ)证明:直线DM⊥平面BMC
(Ⅱ)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.

共享时间:2021-03-23 难度:2 相似度:2
168619. (2021•西安中学•二模) 如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是半圆弧上异于CD的点.
(Ⅰ)证明:直线DM⊥平面BMC
(Ⅱ)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.

共享时间:2021-03-17 难度:2 相似度:2
170857. (2025•师大附中•高一下期中) 如图,在正四棱柱ABCDA1B1C1D1中.AB=1,AA1=2,MDD1的中点.
(1)求证:BD1∥平面AMC
(2)证明:ACBD1
(3)求点D到平面MAC的距离.

共享时间:2025-05-01 难度:3 相似度:1.67
170554. (2021•西安中学•高一上期末) 如图所示,在长方体ABCDA1B1C1D1中,ADAA1=1,AB=2,点EAB的中点.
(Ⅰ)证明:BD1∥平面A1DE
(Ⅱ)证明:D1EA1D
(Ⅲ)求二面角D1ECD的正切值.

共享时间:2021-02-10 难度:3 相似度:1.67
169312. (2025•铁一中学•高二上期末) 如图,在四棱锥ABCDE中,ABACCD=2BE=4,BECDCDCBABAC,平面ABC⊥平面BCDEOBC中点.
(1)证明:AO⊥平面BCDE
(2)求平面ABC与平面ADE夹角的余弦值;
(3)线段AC上是否存在一点Q,使OQ∥平面ADE?如果不存在,请说明理由;如果存在,求的值.

共享时间:2025-02-12 难度:3 相似度:1.67
166757. (2024•建大附中•一模) 如图,在九面体ABCDEFGH中,平面AGF⊥平面ABCDEF,平面AFG∥平面HCDAB=6,底面ABCDEF为正六边形.
(1)证明:GH∥平面ABCDEF
(2)证明:GH⊥平面AFG
(3)求GE与平面ABG所成角的正弦值.

共享时间:2024-03-13 难度:3 相似度:1.67
171890. (2023•长安区一中•高一下期中) 如图,在直三棱柱ABCA1B1C1中,ACBCACBCCC1,点DAB的中点.求证:
(1)AC1∥平面B1CD
(2)A1BB1C

共享时间:2023-05-15 难度:1 相似度:1.5
170168. (2023•铁一中学•高二上期末) 如图,在四棱锥PABCD中,底面ABCD是矩形,AB=2,BCaPA⊥底面ABCD
(1)当a为何值时,BD⊥平面PAC?证明你的结论;
(2)若在BC边上至少存在一点M,使PMDM,求a的取值范围.

共享时间:2023-02-15 难度:1 相似度:1.5
170078. (2023•铁一中学•高一下期末) 如图,在棱长为2的正方体ABCDA1B1C1D1中,点EF分别为棱DCD1C1的中点.
(1)求证:A1F∥平面AD1E
(2)求三棱锥A1AED1的体积.

共享时间:2023-07-06 难度:2 相似度:1
169696. (2024•西安八十五中•高一下期末) 如图,在棱长为4的正方体ABCDA1B1C1D1中,EAA1的中点,FAE的中点.
(1)求证:CE∥平面BDF
(2)求三棱锥EBDF的体积.

共享时间:2024-07-08 难度:2 相似度:1
170081. (2023•铁一中学•高一下期末) 如图,在四棱锥PABCD中,ADBCABAC,∠BAD=150°,∠PDA=30°.
(1)证明:PA⊥平面ABCD
(2)在线段PD上是否存在一点F,使直线CF与平面PBC所成角的正弦值等于

共享时间:2023-07-06 难度:2 相似度:1
170057. (2023•西工大附中•高二上期末) 棱长为2的正方体ABCDA1B1C1D1中,EF分别是DD1DB的中点,G在棱CD上,且CGCD
(Ⅰ)证明:EFB1C
(Ⅱ)求cos<>.

共享时间:2023-03-01 难度:2 相似度:1
170190. (2023•高新一中•高一下期末) 如图,在四棱锥PABCD中,ADBCABBC=2,ADPD=4,∠BAD=60°,∠ADP=120°,点EPA的中点.
(1)求证:BE∥平面PCD
(2)若平面PAD⊥平面ABCD,求直线CD与平面PAC所成角的正弦值.

共享时间:2023-07-11 难度:2 相似度:1
169945. (2023•长安区一中•高二上期末) 如图,在四棱锥SABCD中,ABDCBCABCDSD,平面SCD⊥平面SBC
(1)求证:BC⊥平面SCD
(2)设BCCD=8,SB=16,求三棱锥SBCD的体积.

共享时间:2023-02-10 难度:2 相似度:1
169876. (2023•长安区一中•高一下期末) 如图所示,在三棱锥PABC中,EP在底面ABC内的投影,且E为△ABC的垂心.
(1)若FCPAB内的投影,证明:PFAB
(2)当三棱锥PABC为正三棱锥且AB=6,PC与平面ABC所成角为时,求点C到平面PAB的距离.

共享时间:2023-07-01 难度:2 相似度:1

dygzsxyn

2023-05-18

高中数学 | 高一下 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 7
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!