首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

171028. (2025•高新一中•高二下期中) 如图,四棱锥PABCD的底面ABCD是边长为2菱形,∠ADC=60°,EF分别是ABPD的中点.
(1)求证:EF∥平面PBC
(2)若PCABPCPB=2,求平面PAD与平面PBC所成角的余弦值.

共享时间:2025-04-23 难度:2
[考点]
直线与平面平行,空间向量法求解二面角及两平面的夹角,
[答案]
(1)证明见解析;(2)
[解析]
解:(1)证明:取PC的中点为G,连接FGBG
∵点FG分别是PDPC的中点,
FG是△PDC的中位线,即FGCD
在菱形ABCD中,BECD
FGBEFGBE,即四边形FGBE为平行四边形,则EFBG
BG⊂平面PBCEF⊄平面PBC
EF∥平面PBC
(2)连接PECE
ABPCABCEPCCECPC⊂平面PCECE⊂平面PCE
AB⊥平面PCE
PE⊂平面PCE,∴ABPE

,则PC2PE2+CE2=6,∴PECE
即直线ABCEPE两两垂直,
如图,以E为坐标原点建立空间直角坐标系,

A(0,﹣1,0),B(0,1,0),

设平面PAD的法向量为,平面PBC的法向量为
,则,得

,则,得

设平面PAD与平面PBC所成角为θ,

即平面PAD与平面PBC所成角的余弦值为
[点评]
本题考查了"直线与平面平行,空间向量法求解二面角及两平面的夹角,",属于"必考题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
166525. (2024•城关中学•高二上二月) 已知四棱柱ABCDA1B1C1D1中,底面ABCD为梯形,ABCDA1A⊥平面ABCDADAB,其中ABAA1=2,ADDC=1.NB1C1的中点,MDD1的中点.
(1)求证D1N∥平面CB1M
(2)求平面CB1M与平面BB1CC1的夹角余弦值.

共享时间:2024-12-24 难度:2 相似度:2
171047. (2025•高新一中•高二下期中) 如图,四棱锥PABCD的底面ABCD是边长为2菱形,∠ADC=60°,EF分别是ABPD的中点.
(1)求证:EF∥平面PBC
(2)若PCABPCPB=2,求平面PAD与平面PBC所成角的余弦值.

共享时间:2025-04-30 难度:2 相似度:2
169312. (2025•铁一中学•高二上期末) 如图,在四棱锥ABCDE中,ABACCD=2BE=4,BECDCDCBABAC,平面ABC⊥平面BCDEOBC中点.
(1)证明:AO⊥平面BCDE
(2)求平面ABC与平面ADE夹角的余弦值;
(3)线段AC上是否存在一点Q,使OQ∥平面ADE?如果不存在,请说明理由;如果存在,求的值.

共享时间:2025-02-12 难度:3 相似度:1.67
166447. (2024•西工大附中•高三上二月) 已知边长为4的菱形ABCD(如图1),BD相交于点OE为线段AO上一点,将三角形ABD沿BD折叠成三棱锥ABCD(如图2).
(1)证明:BDCE
(2)若三棱锥ABCD的体积为8,二面角BCEO的余弦值为,求OE的长.

共享时间:2024-12-24 难度:1 相似度:1.5
171890. (2023•长安区一中•高一下期中) 如图,在直三棱柱ABCA1B1C1中,ACBCACBCCC1,点DAB的中点.求证:
(1)AC1∥平面B1CD
(2)A1BB1C

共享时间:2023-05-15 难度:1 相似度:1.5
166329. (2024•西安中学•高二上二月) 如图,在四棱锥PABCD中,PA⊥平面ABCDPB与底面ABCD所成角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,AD=2,PABC=1.
(1)求PB与平面PCD所成角的正弦值;
(2)求平面PCD与平面PBA所成角的余弦值;

共享时间:2024-12-23 难度:2 相似度:1
169696. (2024•西安八十五中•高一下期末) 如图,在棱长为4的正方体ABCDA1B1C1D1中,EAA1的中点,FAE的中点.
(1)求证:CE∥平面BDF
(2)求三棱锥EBDF的体积.

共享时间:2024-07-08 难度:2 相似度:1
170078. (2023•铁一中学•高一下期末) 如图,在棱长为2的正方体ABCDA1B1C1D1中,点EF分别为棱DCD1C1的中点.
(1)求证:A1F∥平面AD1E
(2)求三棱锥A1AED1的体积.

共享时间:2023-07-06 难度:2 相似度:1
169811. (2023•西安中学•高一下期末) 如图,四棱锥PABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形,EF分别为ABPC的中点.
(Ⅰ)证明:BF∥平面PDE
(Ⅱ)求三棱锥EBDF的体积.

共享时间:2023-07-12 难度:2 相似度:1
169330. (2025•西安八十五中•高二上期末) 如图,在三棱柱ABCA1B1C1中,四边形AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1CAB=3,BC=5.
(1)求证:BB1⊥平面ABC
(2)求平面A1C1B与平面B1C1B夹角的余弦值.

共享时间:2025-02-15 难度:2 相似度:1
169418. (2024•西安中学•高三上期末) 如图所示,在四棱锥PABCD中,四边形ABCD为梯形,CDABABBCPAPDBCCDPAPD=1,AB=2,平面PAD⊥平面PBC
(1)若PB的中点为N,求证:CN∥平面PAD
(2)求二面角PADB的正弦值.

共享时间:2024-02-27 难度:2 相似度:1
169352. (2024•师大附中•高一下期末) 如图,在四棱锥PABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,,点MN分别为DPAB的中点.
(1)求证:MN∥平面PBC
(2)求证:平面PBC⊥平面ABCD
(3)求CM与平面PAD所成角的正弦值.

共享时间:2024-07-09 难度:2 相似度:1
170442. (2022•长安区一中•高二上期末) 如图,四棱台ABCDEFGH的底面为正方形,DH⊥平面ABCDEHDHAD=1.
(1)求证:AE∥平面BDG
(2)若平面BDG∩平面ADHm,求直线m与平面BCG所成角的正弦值.

共享时间:2022-02-23 难度:2 相似度:1
169169. (2020•高新一中•三模) 如图,四边形ABCD是边长为2的菱形,BFDECG都垂直于平面ABCD,且CG=2BF=2ED=2.
(1)证明:AE∥平面BCF
(2)若∠DAB,求三棱锥DAEF的体积.

共享时间:2020-04-01 难度:2 相似度:1
169145. (2020•西工大附中•二模) 已知三棱柱ABCA1B1C1中,AA1⊥平面ABC,∠BAC=120°,EF分别是BCA1C1的中点.
(1)证明:EF∥平面ABB1
(2)求直线B1E与平面A1BE所成角的正弦值.

共享时间:2020-03-17 难度:2 相似度:1

dygzsxyn

2025-04-23

高中数学 | 高二下 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 3
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!