首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

1001. (2018•陕西省•真题) 问题提出
(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为   
问题探究
(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.
问题解决
(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)
共享时间:2018-07-02 难度:5
[考点]
等边三角形的性质,勾股定理,垂径定理,圆的综合题,轴对称的性质,
[答案]
答案详见解析
[解析]
解:(1)设O是△ABC的外接圆的圆心,
∴OA=OB=OC,
∵∠A=120°,AB=AC=5,
∴△ABO是等边三角形,
∴AB=OA=OB=5,
(2)当PM⊥AB时,此时PM最大,
连接OA,
由垂径定理可知:AM=AB=12,
∵OA=13,
∴由勾股定理可知:OM=5,
∴PM=OM+OP=18,
(3)设连接AP,OP
分别以AB、AC所在直线为对称轴,
作出P关于AB的对称点为M,P关于AC的对称点为N,
连接MN,交AB于点E,交AC于点F,连接PE、PF,
∴AM=AP=AN,
∵∠MAB=∠PAB,∠NAC=∠PAC,
∴∠BAC=∠PAB+∠PAC=∠MAB+∠NAC=60°,
∴∠MAN=120°
∴M、P、N在以A为圆心,AP为半径的圆上,
设AP=r,
易求得:MN=r,
∵PE=ME,PF=FN,
∴PE+EF+PF=ME+EF+FN=MN=r,
∴当AP最小时,PE+EF+PF可取得最小值,
∵AP+OP≥OA,
∴AP≥OA﹣OP,即点P在OA上时,AP可取得最小值,
设AB的中点为Q,
∴AQ=AC=3,
∵∠BAC=60°,
∴AQ=QC=AC=BQ=3,
∴∠ABC=∠QCB=30°,
∴∠ACB=90°,
∴由勾股定理可知:BC=3
∵∠BOC=60°,OB=OC=3
∴△OBC是等边三角形,
∴∠OBC=60°,
∴∠ABO=90°
∴由勾股定理可知:OA=3
∵OP=OB=3
∴AP=r=OA﹣OP=3﹣3
∴PE+EF+PF=MN=r=3﹣9
∴PE+EF+PF的最小值为(3﹣9)km.


    
[点评]
本题考查了"等边三角形的性质   勾股定理   垂径定理   圆的综合题   轴对称的性质   ",属于"压轴题",熟悉知识点是解题的关键
原创声明:
本题解析属于发布者原创,非正常渠道不可私用,违者必究! !版权申诉
921. (2017•陕西省•真题) 问题提出
(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为      
问题探究
(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.
问题解决
(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.
如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m.
请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)
共享时间:2017-07-10 难度:5 相似度:1.2
850. (2014•陕西省•真题) 问题探究
(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
问题解决
(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.

 
共享时间:2014-09-18 难度:3 相似度:0.93
4762. (2017•高新一中•真题) 如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
德优题库
共享时间:2018-06-27 难度:4 相似度:0.8
6044. (2017•铁一中学•模拟) 小敏在研究最值问题时遇到了这样的一个问题:如图1,在矩形ABCD中,AB=6,AD=8,E、F、G、H分别在矩形ABCD的边AD、AB、BC、CD上,则四边形EFGH的周长是否存在最小值?她决定按照老师讲的由特殊到一般逐步化归的思路去研究,请你帮助她完成下面的探究过程.
探究1:如图2,在AF=2,DH=5的条件下,请在图2中画出周长最小的四边形EFGH,并求出周长的最小值;
探究2:在探究1的启发下,小敏画出了图3:作F关于AD的对称点F1,作F关于BC的对称点F2,作F1关于CD的对称点F3,连接F2F3交CD于H,交BC于点G,连接F1H交AD于E,连接EF、FG,借助图3,他发现四边形EFGH的周长有最小值,并顺利解决了遇到的这个问题.请求出四边形EFGH的周长的最小值.
拓广探究:解决了上述问题后,小敏又想到了新的问题,当四边形EFGH的周长最小时,四边形EFGH的面积是否存在最大值?请帮助小敏解决这个问题,若存在,请求出此时面积的最大值,若不存在请说明理由.
德优题库
共享时间:2017-05-30 难度:5 相似度:0.8
19853. (2021•陕西省•真题) 如图,AB是⊙O的直径,点EF在⊙O上,且=2,连接OEAF,过点B作⊙O的切线,分别与OEAF的延长线交于点CD
(1)求证:∠COB=∠A
(2)若AB=6,CB=4,求线段FD的长.
共享时间:2021-06-25 难度:4 相似度:0.8
437. (2016•陕西省•副题) 如图,已知O的半径为5,△ABCO的内接三角形,AB8,.过点BO的切线BD,过点AADBD,垂足为D
1)求证:∠BAD+C90°
2)求线段AD的长.
共享时间:2016-07-15 难度:5 相似度:0.7
2895. (2019•益新中学•模拟) 如图,PB为⊙O的切线,B为切点.过BOP的垂线BA,垂足为C,交⊙O于点A,连接PAAO,并延长AO交⊙O于点E,与PB的延长线交于点D
(1)求证:PA是⊙O的切线.
(2)若,且OC=4,求PA的长.
                                                                                                                                  
共享时间:2019-05-28 难度:3 相似度:0.7
6039. (2017•铁一中学•模拟) 已知如图,点D在等边△ABC的边AB上,作DG∥BC,交AC于点G,点F在边AC上,连接DF并延长,交BC的延长线于点E,FE=FD.求证:AD=CE.
德优题库
共享时间:2017-05-30 难度:3 相似度:0.7
19061. (2016•交大附中•模拟) 如图,四边形ABDC内接于⊙OABAC,且ABCD、过点A作⊙O的切线AEDC的延长线交于点EADBC交于点F
(1)求证:四边形ABCE是平行四边形;
(2)若AE=12,CD=10,求⊙O半径的长.

 
共享时间:2016-06-21 难度:4 相似度:0.69
6520. (2017•高新一中•模拟) 观察思考:如图,AB是直线a上的两个定点,点CD在直线b上运动(点C在点D的左侧),ABCD=4cm.已知abab间的距离为cm,连接ACBDBC,把△ABC沿BC折叠得△A1BC
(1)当A1D两点重合时,则 AC   cm
(2)当A1D两点不重合时,
①连接A1D,探究A1DBC的位置关系,并说明理由.
②若以A1CBD为顶点的四边形是矩形,画出示意图并直接写出AC的长.
共享时间:2017-06-20 难度:5 相似度:0.65
3143. (2018•滨河中学•真题) 如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BCAB相交于点DE,连接AD.已知∠CAD=∠B
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB,求⊙O的半径.
德优题库
共享时间:2019-05-31 难度:3 相似度:0.53
961. (2016•陕西省•真题) 如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.
求证:(1)FC=FG;(2)AB2=BC•BG.
                                                                                                                     
共享时间:2016-07-11 难度:4 相似度:0.53
20183. (2021•西工大附中•五模) 小明在学习过程中遇到了一个函数y+1,小明根据学习反比例函数y的经验,对函数y+1的图象和性质进行了探究.
(1)画函数图象:[问题1]函数y+1的自变量x的取值范围是______
①列表:如表.
x ﹣6 ﹣2 1 0 3 4 6 10
y 0 ﹣3 ﹣1 ﹣7 9 5 3 2
②描点:点已描出,如图所示.

③连线:[问题2]请你根据描出的点,西出该函数的图象.
(2)探究性质:根据反比例函数y的图象和性质,结合画出的函数y+1图象,回答下列问题:
[问题3]①该函数的图象是具有轴对称性和中心对称性,其对称中心的坐标是_______
[问题4]②该函数图象可以看成是由y的图象平移得到的,其平移方式为__________
[问题5]③结合函数图象,请直接写出+1≥﹣1时x的取值范围____________
共享时间:2021-06-03 难度:4 相似度:0.53
807. (2015•陕西省•真题) 如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.
(1)求证:∠BAD=∠E;
(2)若⊙O的半径为5,AC=8,求BE的长.
                                                                                                                             
共享时间:2015-08-18 难度:3 相似度:0.53
510. (2018•陕西省•副题) 问题提出
1)如图,在△ABC中,AB4,∠A135°,点B关于AC所在直线的对称点为B′,则BB′的长度为      
问题探究
2)如图,半圆O的直径AB10C的中点,点D上,且2PAB上的动点,试求PC+PD的最小值.
问题解决
3)如图,扇形花坛AOB的半径为20m,∠AOB45°.根据工程需要.现想在上选点P,在边OA上选点E,在边OB上选点F,用装饰灯带在花坛内的地面上围成一个△PEF,使晚上点亮时,花坛中的花卉依然赏心悦目.为了既节省材料,又美观大方,需使得灯带PE+EF+FP的长度最短,并且用长度最短的灯带围成的△PEF为等腰三角形.试求PE+EF+FP的值最小时的等腰△PEF的面积.(安装损耗忽略不计)
共享时间:2018-07-03 难度:5 相似度:0.53

艺黎

2018-07-02

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 762
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!