首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

25783. (2024•高新一中•五模) (1)如图1,点O是等边△ABC的内心,∠DOE的两边分别交AB、BC于点D、E,且∠DOE=120°,若等边△ABC的边长为6,求四边形ODBE周长的最小值.
德优题库
(2)为培养学生劳动实践能力,某学校计划在校东南角开辟出一块平行四边形劳动实践基地.如图2所示,劳动实践基地为▱ABCD,点O为其对称中心,且OB=20m,点E、F分别在边AB、BC上,四边形EBFO为学校划分给九年级的实践活动区域,九年级学生打算在四边形EBFO区域种植两种不同的果蔬,即在△BEF、△EFO种植不同的果蔬.在点O处安装喷灌装置,且喷灌张角为60°,即∠EOF=60°,并修建OE、EF、OF三条小路.现要求规划的三条小路OE、EF、FO总长最小的同时,果蔬种植区域四边形EBFO的面积最大.求满足规划要求的三条小路OE、EF、FO总长的最小值,并计算同时满足四边形EBFO面积最大时学校应开辟的劳动实践基地▱ABCD的面积.
共享时间:2024-04-20 难度:5
[考点]
等腰三角形的性质,等边三角形的判定与性质,直角三角形的性质,含30度角的直角三角形,全等三角形的判定与性质,勾股定理,平行四边形的判定与性质,四边形综合题,
[答案]
(1)6+2;(2)OE、EF、FO和的最小值为20,平行四边形ABCD的面积=
[解析]
解:(1)连接OB,OC,如图,
菁优网
∵点O是等边△ABC的内心,
∴∠ABO=∠OBC=∠OCB=∠ACO=30°,
∴OB=OC,∠BOC=120°
∵∠DOE=120°.,
∴∠BOD=∠COE,
在△BOD与△COE中,
 ,
∴△BOD≌△COE(ASA),
∴BD=CE,OD=OE,
∴四边形ODBE的周长=BD+BE+EO+OD=BC+2OE,
∵BC=6,
∴当OE⊥BC时,OE最小,四边形ODBE周长最小,此时OE
∴四边形ODBE的周长的最小值=6+2
(2)分别以AB、BC所在直线为对称轴,作点O关于AB的对称点为M,O关于BC的对称点为N,连接MN,交AB于点E1,交BC于点F1,连接BM、BN、EM、FN、OE1、OF1,如图,
菁优网
则ME=OE,OF=FN.
∵两点之间线段最短,
∴ME+EF+NF≥MN,
∵△OEF周长=OE+EF+OF=ME+EF+NF,
∴△OEF周长的最小值是MN,
∵O、M关于AB对称,O、N关于BC对称,
∴BM=BN=BO=20m,∠BMN=∠BOE1,∠BNM=∠BOF1,∠EME1=∠EOE1,∠FNF1=∠FOF1
∴∠EOF=∠E1OF1=60°.
∴∠BMN+∠BNM=∠BOE1+∠BOF1=∠E1OF1=60°,
∴∠MBN=120°,
∴∠BMN=∠BNM=30°,
过点B作BH⊥MN,
菁优网菁优网
∴BH=10,MH=NH=10
MN=20
即OE、EF、FO和的最小值为20
此时S四边形形EBFO=S△BEM+S△BFN=S△BMN-S△BEF
∵S△BMN的面积为100
∴当△BEF的面积最小时,四边形EBFO的面积最大,
在△BEF中,∠ABC=60°,MN上的高h=10(定角定高模型),
∴当BE=BF时,△BEF的面积最小,且最小值为
∴四边形EBFO的面积最大值=100
∵当BE=BF,∠ABC=60°时,∠BEM=∠BFN=120°=∠BEO=∠BFO=120°,得四边形EBFO为平行四边形,
∴此时平行四边形ABCD的面积=4×四边形EBFO的面积=
[点评]
本题考查了"等腰三角形的性质,等边三角形的判定与性质,直角三角形的性质,含30度角的直角三角形,全等三角形的判定与性质,勾股定理,平行四边形的判定与性质,四边形综合题",属于"综合题",熟悉考点和题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
503. (2018•陕西省•副题) 如图,在△ABC中,ABACO是边BC的中点,延长BA到点D,使ADAB,延长CA到点E,使AEAC,连接ODOE,求证:∠BOE=∠COD
共享时间:2018-07-03 难度:3 相似度:1.25
1052. (2019•陕西省•真题) 问题提出:
1)如图1,已知△ABC,试确定一点D,使得以ABCD为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
2)如图2,在矩形ABCD中,AB4BC10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC90°,求满足条件的点P到点A的距离;
问题解决:
3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
共享时间:2019-07-05 难度:5 相似度:1.13
1087. (2020•陕西省•真题) 如图,在四边形ABCD中,ADBC,∠B=∠CE是边BC上一点,且DEDC.求证:ADBE
                                                                                                                       
共享时间:2020-07-30 难度:3 相似度:1.13
882. (2013•陕西省•真题) 问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

 
共享时间:2013-11-18 难度:3 相似度:1.13
838. (2014•陕西省•真题) 如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.
求证:AB=BF.

                                                                                                                  
共享时间:2014-09-18 难度:2 相似度:1.13
811. (2015•陕西省•真题) 如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为      
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
共享时间:2015-08-18 难度:5 相似度:1.13
806. (2015•陕西省•真题) 如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.

 
共享时间:2015-08-18 难度:3 相似度:1.13
1045. (2019•陕西省•真题) 如图,点AEFB在直线l上,AEBFACBD,且ACBD,求证:CFDE
                                                                                                                     
共享时间:2019-07-05 难度:3 相似度:1.13
775. (2019•陕西省•副题) 如图,在△ABC中,DBC边的中点,过点DDEAB,并与AC交于点E,延长DE到点F,使得EFDE,连接AF
求证:AFBC
共享时间:2019-07-10 难度:3 相似度:1.13
963. (2016•陕西省•真题) 问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
共享时间:2016-07-11 难度:5 相似度:0.75
361. (2012•红星高中•真题) 如图,正三角形ABC的边长为3+
(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.
共享时间:2020-07-03 难度:5 相似度:0.75
3145. (2018•滨河中学•真题) 如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B    °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
                                                                           
共享时间:2019-05-31 难度:5 相似度:0.75
957. (2016•陕西省•真题) 如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.
求证:AF∥CE.
                                                                                                                         
共享时间:2016-07-11 难度:3 相似度:0.63
1089. (2020•陕西省•真题) 如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知ABC三点共线,CAAMNMAMAB=31mBC=18m,试求商业大厦的高MN
                                                                                                                         
共享时间:2020-07-30 难度:3 相似度:0.63
4508. (2018•师大附中•模拟) 如图,在四边形ABCD中,点E在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.
德优题库
共享时间:2018-06-04 难度:2 相似度:0.63

dyczsx2023

2024-04-20

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 437
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!