首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

25783. (2024•高新一中•五模) (1)如图1,点O是等边△ABC的内心,∠DOE的两边分别交AB、BC于点D、E,且∠DOE=120°,若等边△ABC的边长为6,求四边形ODBE周长的最小值.
德优题库
(2)为培养学生劳动实践能力,某学校计划在校东南角开辟出一块平行四边形劳动实践基地.如图2所示,劳动实践基地为▱ABCD,点O为其对称中心,且OB=20m,点E、F分别在边AB、BC上,四边形EBFO为学校划分给九年级的实践活动区域,九年级学生打算在四边形EBFO区域种植两种不同的果蔬,即在△BEF、△EFO种植不同的果蔬.在点O处安装喷灌装置,且喷灌张角为60°,即∠EOF=60°,并修建OE、EF、OF三条小路.现要求规划的三条小路OE、EF、FO总长最小的同时,果蔬种植区域四边形EBFO的面积最大.求满足规划要求的三条小路OE、EF、FO总长的最小值,并计算同时满足四边形EBFO面积最大时学校应开辟的劳动实践基地▱ABCD的面积.
共享时间:2024-04-20 难度:5
[考点]
等腰三角形的性质,等边三角形的判定与性质,直角三角形的性质,含30度角的直角三角形,全等三角形的判定与性质,勾股定理,平行四边形的判定与性质,四边形综合题,
[答案]
(1)6+2;(2)OE、EF、FO和的最小值为20,平行四边形ABCD的面积=
[解析]
解:(1)连接OB,OC,如图,
菁优网
∵点O是等边△ABC的内心,
∴∠ABO=∠OBC=∠OCB=∠ACO=30°,
∴OB=OC,∠BOC=120°
∵∠DOE=120°.,
∴∠BOD=∠COE,
在△BOD与△COE中,
 ,
∴△BOD≌△COE(ASA),
∴BD=CE,OD=OE,
∴四边形ODBE的周长=BD+BE+EO+OD=BC+2OE,
∵BC=6,
∴当OE⊥BC时,OE最小,四边形ODBE周长最小,此时OE
∴四边形ODBE的周长的最小值=6+2
(2)分别以AB、BC所在直线为对称轴,作点O关于AB的对称点为M,O关于BC的对称点为N,连接MN,交AB于点E1,交BC于点F1,连接BM、BN、EM、FN、OE1、OF1,如图,
菁优网
则ME=OE,OF=FN.
∵两点之间线段最短,
∴ME+EF+NF≥MN,
∵△OEF周长=OE+EF+OF=ME+EF+NF,
∴△OEF周长的最小值是MN,
∵O、M关于AB对称,O、N关于BC对称,
∴BM=BN=BO=20m,∠BMN=∠BOE1,∠BNM=∠BOF1,∠EME1=∠EOE1,∠FNF1=∠FOF1
∴∠EOF=∠E1OF1=60°.
∴∠BMN+∠BNM=∠BOE1+∠BOF1=∠E1OF1=60°,
∴∠MBN=120°,
∴∠BMN=∠BNM=30°,
过点B作BH⊥MN,
菁优网菁优网
∴BH=10,MH=NH=10
MN=20
即OE、EF、FO和的最小值为20
此时S四边形形EBFO=S△BEM+S△BFN=S△BMN-S△BEF
∵S△BMN的面积为100
∴当△BEF的面积最小时,四边形EBFO的面积最大,
在△BEF中,∠ABC=60°,MN上的高h=10(定角定高模型),
∴当BE=BF时,△BEF的面积最小,且最小值为
∴四边形EBFO的面积最大值=100
∵当BE=BF,∠ABC=60°时,∠BEM=∠BFN=120°=∠BEO=∠BFO=120°,得四边形EBFO为平行四边形,
∴此时平行四边形ABCD的面积=4×四边形EBFO的面积=
[点评]
本题考查了"等腰三角形的性质,等边三角形的判定与性质,直角三角形的性质,含30度角的直角三角形,全等三角形的判定与性质,勾股定理,平行四边形的判定与性质,四边形综合题",属于"综合题",熟悉考点和题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
24844. (2022•爱知中学•八下期中) 将图形中的三角形绕某一点作适当旋转,能够解决很多几何问题.
(1)如图1,直角△ABC中,AB=AC,∠BAC=90°,D为BC边上的一点,连接AD,将△ABD绕点A逆时针旋转90°至△ACF,连接DF.若AD=2,BD=1,则CD=       
(2)如图2,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是16,求AC的长;
(3)如图3,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=2,BD=3,求四边形ABCD的面积.
德优题库
共享时间:2022-05-25 难度:4 相似度:1.38
503. (2018•陕西省•副题) 如图,在△ABC中,ABACO是边BC的中点,延长BA到点D,使ADAB,延长CA到点E,使AEAC,连接ODOE,求证:∠BOE=∠COD
共享时间:2018-07-03 难度:3 相似度:1.25
25157. (2022•高新一中•八下期中) 已知,∠MON=90°,点A在边OM上,点P是边ON上一动点,将线段AP绕点A逆时针旋转60°,得到线段AB,连接OB,BP.
(1)如图1,当∠OAP=45°时,试判断OB与AP的位置关系:       
(2)如图2,当∠OAP=60°时,OA=2时,求线段OB的长度;
(3)如图3,当∠OAP=α时,将线段OB绕点O顺时针旋转60°,得到线段OC,作CH⊥ON于点H.当点P在射线ON上运动时,用等式表示线段OA与CH之间的数量关系,并证明.
德优题库
共享时间:2022-05-12 难度:4 相似度:1.13
1045. (2019•陕西省•真题) 如图,点AEFB在直线l上,AEBFACBD,且ACBD,求证:CFDE
                                                                                                                     
共享时间:2019-07-05 难度:3 相似度:1.13
1052. (2019•陕西省•真题) 问题提出:
1)如图1,已知△ABC,试确定一点D,使得以ABCD为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
2)如图2,在矩形ABCD中,AB4BC10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC90°,求满足条件的点P到点A的距离;
问题解决:
3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
共享时间:2019-07-05 难度:5 相似度:1.13
1087. (2020•陕西省•真题) 如图,在四边形ABCD中,ADBC,∠B=∠CE是边BC上一点,且DEDC.求证:ADBE
                                                                                                                       
共享时间:2020-07-30 难度:3 相似度:1.13
25677. (2023•陕西省•真题) 如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.
德优题库
共享时间:2023-07-20 难度:3 相似度:1.13
25103. (2022•铁一中学•八下期中) 如图,在△ABC中,AB=AC,点D,E,F,分别在AB,BC,AC边上,且BE=CF,BD=CE,∠A=30°,求∠DEF的度数.
德优题库
共享时间:2022-05-18 难度:3 相似度:1.13
25106. (2022•铁一中学•八下期中) 问题提出:
(1)如图1,已知线段AB=2,AC=4,连接BC,则三角形ABC面积最大为        
问题探究:
(2)如图2,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,若CD+BC=10,求四边形ABCD的面积;
问题解决:
(3)在四边形ABCD中,AB=AD,∠BAD+∠BCD=180°,AC=8,求四边形ABCD面积的最大值.
德优题库
共享时间:2022-05-18 难度:4 相似度:1.13
882. (2013•陕西省•真题) 问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

 
共享时间:2013-11-18 难度:3 相似度:1.13
24841. (2022•爱知中学•八下期中) 如图,AD⊥BD,AC⊥BC,AD与BC交于点O,AD=BC.
求证:OC=OD.
德优题库
共享时间:2022-05-25 难度:3 相似度:1.13
24220. (2021•交大附中•七下期中) 如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.
(1)求证:△ABD≌△EDC;
(2)若AB=2,BE=3,求CD的长.
德优题库
共享时间:2021-05-06 难度:4 相似度:1.13
6239. (2017•铁一中学•模拟) 如图,点ACDB四点共线,且ACBD,∠A=∠B,∠ADE=∠BCF,求证:DECF
                                                                                                                                  
共享时间:2017-07-03 难度:3 相似度:1.13
21196. (2019•爱知中学•一模) 如图,已知AC⊥AB于点A,BD⊥AB于点B,AF=BE,CE=DF,求证:∠C=∠D.
共享时间:2019-05-20 难度:3 相似度:1.13
20179. (2021•西工大附中•五模) 如图,ABCD,点ECB的延长线上,连接BD,∠A=∠EACED.求证:∠CBD=∠CDB
共享时间:2021-06-03 难度:3 相似度:1.13

dyczsx2023

2024-04-20

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 371
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!