首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

21440. (2020•铁一中学•八模) 如图,AB=8,P是线段AB上一动点(不与AB重合),分别以APBP为边在AB的同侧作正方形APDC和正方形BPEF

问题提出
(1)如图①,连接PCPF,则PC+PF的值为     
问题探究
(2)如图②,求△PCF周长的最小值;
问题解决
(3)如图③所示,MN分别是CDEF的中点,请问△PMN的周长是否存在最小值?若存在,请求出周长的最小值;若不存在,请说明理由.△PMN的面积是否存在最大值?若存在,请求出面积的最大值,若不存在,请说明理由。
共享时间:2020-07-21 难度:5
[考点]
配方法的应用,勾股定理,正方形的性质,四边形综合题,四边形的面积最大值问题,
[答案]
答案详见解析
[解析]
解:(1)如图1中,设PAx,则PB=8﹣x
∵四边形APDC,四边形PBEF都是正方形,
PCPAxPFPB(8﹣x),
PC+PFx+(8﹣x)=8
故答案为:8

(2)如图2中,设PAx,则PCxPF(8﹣x),

∵四边形APDC,四边形PBEF都是正方形,
∴∠CPD=∠EPF=45°,
∴∠CPF=90°,
CF=2
∴△PCF的周长=8+=8+2
x=4时,△PCF的周长最小,最小值=8+8.

(3)△PMN的周长存在最小值,面积存在最大值.
理由:如图3中,过点MMJPAJ,过点NNKPBK,延长CDNKG.设PA=2y,则PB=8﹣2y

ACMJPDCMDM
AJPJy
PENKBFEHNF
PKBK=4﹣y
MJAC=2yNKPB=8﹣2y
PMPJyPNPK(4﹣y),
PM+PN=4
∵∠MJK=∠JKG=∠JMG=90°,
∴四边形MJKG是矩形,
∴∠MGK=∠MGN=90°,
MGJK=4,MJGK=2y
NGNKGK=(8﹣2y)﹣2y=8﹣4y
MN=4
∴△PNM的周长=4+4
y=2时,△PMN的周长最小,最小值为4+4.
SPMNS四边形MJKNSPJMSPNK×8×4﹣×y×2y×(4﹣y)×(8﹣2y)=﹣2(y﹣2)2+8,
∵﹣2<0,
y=2时,△PMN的面积最大,最大值为8.
[点评]
本题属于四边形综合题,考查了正方形的性质,勾股定理,二次函数的性质等知识,解题的关键是学会利用参数,构建二次函数解决问题,属于中考常考题型.
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
20480. (2020•铁一中学•八模) 如图,AB=8,P是线段AB上一动点(不与A、B重合),分别以AP、BP为边在AB的同侧作正方形APDC和正方形BPEF.
德优题库
问题提出
(1)如图①,连接PC、PF,则PC+PF的值为_________;
问题探究
(2)如图②,求△PCF周长的最小值;
问题解决
(3)如图③所示,M、N分别是CD、EF的中点,请问△PMN的周长是否存在最小值?若存在,请求出周长的最小值;若不存在,请说明理由.△PMN的面积是否存在最大值?若存在,请求出面积的最大值,若不存在,请说明理由.
共享时间:2020-07-27 难度:5 相似度:1.6
198336. (2023•新城区•八上期中) 如图,在△ABC中,∠C=90°,BC,以AB为一条边向三角形外部作正方形,已知正方形的面积是45,求△ABC的周长.
共享时间:2023-11-15 难度:2 相似度:1.4
181177. (2023•爱知中学•九上四月) 德优题库如图,已知正方形ABCD,点E是AB边上的一点,连接ED.请用尺规作图的方法在线段DE上求作一点F,使得∠BEF+∠BCF=180°(不写作法,保留作图痕迹).
共享时间:2023-01-10 难度:1 相似度:1.2
181373. (2024•经开一中•八下一月) 德优题库新定义:有一组对角相等而另一组对角不相等的四边形叫做“等对角四边形”.
(1)如图1,若四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=65°,∠B=80°,则∠C的度数为        °.
(2)如图2,“等对角四边形”ABCD,已知:∠ABC=∠ADC,BC=CD,你认为AB=AD成立吗?若成立,请你证明此结论,若不成立,请说明理由.
(3)在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=7,AD=5.求对角线AC的长.
共享时间:2024-04-18 难度:1 相似度:1.2
181324. (2024•未央区•七下二月) 问题提出
(1)如图1,在△ABC中,已知BC=6,P为边BC上一动点,S△ABC=6,则AP的最小值为        
问题探究
(2)小哲同学喜欢探究生活中的数学问题,学习完轴对称的知识以后,他将一张正方形纸片沿着对角线对折,根据轴对称图形的定义来判断,得到结论:正方形是轴对称图形,对角线所在的直线是正方形的一条对称轴.他尝试利用这一结论解决问题;如图2,正方形ABCD的边长为4,E为DC的中点,P为对角线BD上的动点,F为BC上的动点,请求出PE+PF的最小值.请你解决小哲提出的问题.
问题解决
(3)如图3,这是某公园的一块四边形市民健身场地ABCD,公园管理部门在△ACD内规划设置体育锻炼区域,在△ABC内设置合唱团训练区域,在BD处修建养生小路,要求BD尽可能的长,其中AB=10m,BC=16m,AD=AC,∠CAD=60°.已知铺设小路 BD的费用是每米1600元,请你计算铺设小路的费用最多需要花费多少钱.
德优题库
共享时间:2024-06-18 难度:1 相似度:1.2
181245. (2024•西光中学•八下二月) 德优题库如图,在正方形ABCD中,点E是BC上一点,且∠BAE=30°,请用尺规作图法,在CD上求作一点F,使点F到AE的距离等于DF的长.(保留作图痕迹,不写作法)
共享时间:2024-06-24 难度:1 相似度:1.2
181186. (2023•爱知中学•九上四月) (1)如图1,∠ABC=90°,分别过AC两点作经过点B的直线的垂线,垂足分别为EFAE=4,BE=2,BF=3,求CF的长度为                   
(2)如图2,在矩形ABCD中,AB=4,BC=10,点EFM分别在ABBCAD上,∠EMF=90°,AM=2,当BE+BF=9时,求四边形MEBF的面积.
(3)如图3,在△ABC中,∠ACB=90°,AC=15,BC=20,点EF分别在边ABBC上,∠CEF=α且,若BF=8,求BE的长度.
共享时间:2023-01-10 难度:1 相似度:1.2
199189. (2022•交大附中•八下期中) (1)如图1,已知锐角△ABC的边BC=3,SABC=6,点M为△ABC内一点,过点MMDBCBC于点D,连接AM,则AM+MD的最小值为      
(2)如图2,点P是正方形ABCD内一点,PA=2,PBPC=4.求∠APB的度数.
(3)如图3,在长方形ABCD中,其中AB=600,AD=800,点P是长方形内一动点,且SPAD=2SPBC,点Q为△ADP内的任意﹣点,是否存在一点P和一点Q.使得AQ+DQ+PQ有最小值?若存在,请求出此时PQ的长度,若不存在,请说明理由.

共享时间:2022-05-14 难度:1 相似度:1.2
181160. (2023•爱知中学•月考) 【问题探究】
(1)如图1,在矩形ABCD中,AB=4,点E、F分别为边AD、BC上的点,且AE=1,BF=2,P为边AB上一动点,连接EP、PF,则EP+PF的最小值为        
(2)如图2,在矩形ABCD中,AB=4,BC=8,点E、F分别在边AD和BC上,连接AC,EF⊥AC于M,求EF的长.
【问题解决】
(3)某市进行绿化改造,美化生态环境.如图3,将一块四边形的空地ABCD改造成了供市民休闲锻炼的公园.已知:在四边形ABCD中,AB∥CD,∠C=90°,tan∠CDA=2,BC=60米,AB=110米,在公园的AD边上有一个出口M,经测量MD=2MA,为了方便市民,现计划在公园的AB边和CD边上分别建一个休息亭F和E,然后铺设观景道BE、EF、FM,并且EF⊥BM,若要使这三条观景道的距离和最小(即BE+EF+FM最小),请求出休息亭F距离点A多远?并求出BE+EF+FM的最小值.(小路面积忽略不计,结果保留根号)
德优题库
共享时间:2022-12-01 难度:1 相似度:1.2
181469. (2024•铁一中学•七下二月) 【初步探究】
(1)如图1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接BD、CE.
①由题中条件判断BD与CE的数量关系:BD        CE;
②BD与EC是否存在特殊的位置关系?请你证明.
【灵活运用】
(2)将△ADE绕点A旋转至如图2所示位置,连接BD、CE.在(1)中的结论下,若AB=3,AE=5,四边形BCDE的面积存在最大值吗?若存在,求出这个值;若不存在,说明理由.
德优题库
共享时间:2024-06-19 难度:1 相似度:1.2
181134. (2024•爱知中学•月考) 问题提出:
(1)如图1,在一间黑暗的屋子里用一盏白炽灯照射正下方如图所示的球.已知球到灯和到地面的距离相等,且球的直径是40cmAB=40cm,则这个球在地面上的影子的面积是              .(结果保留π)
问题探究:
(2)将两个全等的等腰直角三角形摆成如图2所示的样子(图中所有点、线都在同一平面内,点FGBC边上),若AC=4,求FG的最小值,并证明你的结论.(结果保留根号)
问题解决:
(3)某地质勘察队,为了进行资源勘测,建立了一个四边形野外勘察基地ABCD,如图3所示,现在此勘察基地铺设了两条道路,DEAC,并使得∠AFE=∠ADCCABA,现测得米,CFAB=600米,,根据工作需要在点A处安装了一个可转动的照明灯,照明灯的两边缘光线夹角不变且与BC分别交于点GH(受实际因素影响点GH始终在BC边上),经过测量,∠B与∠GAH恰好互余,为了尽快完成勘察工作,勘察队需要夜间工作,那么夜间工作时,整个基地未被灯光A照到的盲区部分面积是否存在最大值?若存在,请求出最大面积是多少,如果不存在,请说明理由.
共享时间:2023-12-01 难度:1 相似度:1.2
180297. (2023•逸翠园中学•八上二月) 若一条直线把一个平面图形分成面积相等的两部分,那么这条直线叫做该平面图形的“和谐线”,其中“和谐线”被该平面图形截得的线段叫做该平面图形的“和谐线段”.
问题探究:

(1)如图①,在△ABC中,ABAC,画出经过点A的△ABC的“和谐线段”;
(2)如图②,在△ABC中,∠B=90°,AB=8,BC=6,请求出分别经过A点,C点的△ABC的两条“和谐线段”的长;
问题解决:
(3)如图③,四边形ABCD是某市规划中的商业区示意图.其中∠B=∠D=90°,∠A=120°,AB=2,CD=10,现计划在商业区内修一条笔直的单行道MN(小道的宽度不计),入口MBC上,出口NCD上,使得MN为四边形ABCD的“和谐线段”,在道路一侧△MNC区域规划为公园,为了美观要求△MNC是以CM为腰的等腰三角形,请通过计算说明设计师的想法能否实现?若可以,请确定点M的位置(即求CM的长).

共享时间:2023-12-10 难度:1 相似度:1.2
180248. (2023•航天中学•八上二月) (1)如图1,在正方形ABCD中,EFGH分别为ABADCDBC边上的动点,连接EGHF相交于点P.且∠EPH=∠A
①填空:     
②如图2,当四边形ABCD为长方形,AB=4,BC=6时,求的值.
(2)如图3,这是某城市中央公园的设计示意图,已知四边形ABCD是平行四边形,AB=0.8kmAD=1km.公园设计师计划在公园内修建两条观光小路EGFH(小路宽度不计,点EFGH分别在ABADCDBC边上),根据实际需要,∠EPH=∠A.若先修好的观光小路EG长为1.1km,则另一条观光小路FH多长?

共享时间:2023-12-26 难度:1 相似度:1.2
179977. (2024•航天中学•七下期中) 【问题背景】
(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:①线段AD,BE之间的数量关系为       ;②∠AEB的度数为       
【问题探索】
(2)如图2,△ACB为等腰直角三角形,∠ACB=90°,点D为边AB上一点,以CD为边作等腰直角三角形DCE,且∠DCE=90°,连接BE,若AD=2,BD=5,求△BDE的面积;
【问题解决】
(3)为了开展劳动实践教育,培养科学素养,实现多维学科融合.某校规划了一块如图3所示的四边形生物科学基地ABDC,经测量:∠ABC=90°,AB=BC,∠BDC=45°.连接AD,将基地分成两部分种植不同的植物,若△ACD的面积为8平方米,则线段CD的长度为多少?
德优题库
共享时间:2024-05-24 难度:1 相似度:1.2
179951. (2024•陆港中学•八下期中) 德优题库如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E.若AC=6,AB=10.
(1)求AE的长;
(2)求DE的长.
共享时间:2024-05-16 难度:1 相似度:1.2

dcyx2020

2020-07-21

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 505
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!