首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

170325. (2022•长安区一中•高一下期末) 如图所示,在四棱锥PABCD中,PA⊥平面PCD,底面ABCD满足ADBCAPABBCAD=4,∠ABC=90°,EAD的中点,ACBE的交点为O
(1)设H是线段BE上的动点,证明:三棱锥HPCD的体积是定值;
(2)(文科生做)求四棱锥PABCD的体积.
(理科生做)求直线BC与平面PBD所成角的余弦值.

共享时间:2022-07-24 难度:2
[考点]
棱柱、棱锥、棱台的体积,直线与平面所成的角,
[答案]
(1)证明见解析;
(2)
[解析]
证明:(1)因为底面ABCD为梯形,且BCED,所以四边形BCDE为平行四边形,则BECD
BE⊄平面PCDCD⊂平面PCD,所以BE∥平面PCD
又因为H为线段BE上的动点,△PCD的面积是定值,从而三棱锥HPCD的体积是定值;
解:(2)(文科生)因为PA⊥平面PCD,所以PACD,结合BECD,所以APBE
又因为,且EAD的中点,
所以四边形ABCE为正方形,所以BEAC,结合APACA,则BE⊥平面APC,连接PO,则BEPO
因为PA⊥平面PCD,所以PAPC
因为,所以△PAC是等腰直角三角形,O为斜边AC上的中点,
所以POAC,且ACBEO,所以PO⊥平面ABCD,所以PO是四棱锥PABCD的高,
又因为梯形ABCD的面积为
在Rt△APC中,,所以
(理科生)以O为坐标原点,建立空间直角坐标系Oxyz,如图所示,



设平面PBD的法向量为=(uvw),则,即,则
w=1,得到=(1,3,1),
BC与平面PBD所成的角为α,则,所以
所以直线BC与平面PBD所成角的余弦值为
[点评]
本题考查了"棱柱、棱锥、棱台的体积,直线与平面所成的角,",属于"易错题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
166588. (2024•华清中学•高二上一月) 如图,三棱台ABCA1B1C1中,侧面四边形ACC1A1为等腰梯形,底面三角形ABC为正三角形,且AC=2A1C1=2.设D为棱A1C1上的点.
(1)若DA1C1的中点,求证:ACBD
(2)若三棱台ABCA1B1C1的体积为,且侧面ACC1A1⊥底面ABC,试探究是否存在点D,使直线BD与平面BCC1B1所成角的正弦值为?若存在,确定点D的位置;若不存在,说明理由.

共享时间:2024-10-12 难度:2 相似度:2
172047. (2023•铁一中学•高一下期中) 如图,直三棱柱ABCA1B1C1中,BCAA1=1,P为线段BC1上的动点.
(1)当P为线段BC1上的中点时,求三棱锥BPAC的体积;
(2)当P在线段BC1上移动时,求AP+CP的最小值.

共享时间:2023-05-21 难度:1 相似度:1.5
167279. (2023•长安区一中•高三上五月) 如图,△ABCABBC=2,∠ABC=90°,EF分别为ABAC边的中点,以EF为折痕把AEF折起,使点A到达点P的位置,且PBBE
(Ⅰ)证明:EF⊥平面PBE
(Ⅱ)设N为线段PF上动点,求直线BN与平面PCF所成角的正弦值的最大值.

共享时间:2023-12-29 难度:1 相似度:1.5
172006. (2023•西工大附中•高一下期中) 如图,正三棱锥VABC是某正方体的一部分,其所有顶点都是原正方体的顶点,已知ABBCAC=2,VAVBVC,点MN分别为MABC的中点,一只蚂蚁从点M出发,沿三棱锥VABC表面爬行到点N,求:

(1)该三棱锥VABC的体积;
(2)蚂蚁爬行的最短路线长.
共享时间:2023-05-10 难度:1 相似度:1.5
167854. (2024•西工大附中•模拟) 如图,四棱锥PABCD,侧面PAD是边长为2的正三角形且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为棱PC上的动点且
(Ⅰ)求证:△PBC为直角三角形;
(Ⅱ)试确定λ的值,使得三棱锥PAMD的体积为

共享时间:2024-03-05 难度:1 相似度:1.5
168526. (2021•西安中学•六模) 如图三棱锥ABCD被一平面所截,截面为平行四边形EFGH
(1)求证:EHAB
(2)若四边形EFGH是边长为1的正方形,且点EAD的中点,在△BCD中,∠BCD=90°,BC=2,AC=2,求三棱锥ABCD的体积.

共享时间:2021-05-18 难度:1 相似度:1.5
171616. (2024•交大附中•高一下期中) 在直三棱柱ABCA1B1C1中,ABBC,侧棱长为3,侧面积为
(1)求三棱锥BA1B1C的体积;
(2)若点DE分别在三棱柱的棱CC1BB1上,且CDBE,线段A1EA1DDE的延长线与平面ABC交于FGH三点,证明:FGH共线.

共享时间:2024-05-18 难度:1 相似度:1.5
168149. (2023•西工大附中•六模) 如图,四棱锥PABCD底面为菱形,ABAP=2,PA⊥底面ABCDEF分别是线段PBPD的中点,G是线段PC上的一点.
(1)若,证明直线AG在平面AEF内;
(2)若直线AG与平面AEF所成角的正弦值为,试确定的值.

共享时间:2023-05-19 难度:1 相似度:1.5
170301. (2022•西安中学•高二上期末) 如图甲,在直角三角形ABC中,已知ABBCBC=4,AB=8,DE分别是ABAC的中点.将△ADE沿DE折起,使点A到达点A′的位置,且ADBD,连接ABAC,得到如图乙所示的四棱锥A′﹣DBCEM为线段AD上一点.

(Ⅰ)证明:平面ADB⊥平面DBCE
(Ⅱ)过BCM三点的平面与线段A'E相交于点N,从下列三个条件中选择一个作为已知条件,求直线DN与平面ABC所成角的正弦值.
BMBE
②直线EMBC所成角的大小为45°;
③三棱锥MBDE的体积是三棱锥EA'BC体积的

共享时间:2022-02-23 难度:4 相似度:1.5
167370. (2024•长安区•高二下一月) 将一条长为6的铁丝截成9段,拼成一个正三棱柱,求该三棱柱体积的最大值.
共享时间:2024-04-22 难度:1 相似度:1.5
169696. (2024•西安八十五中•高一下期末) 如图,在棱长为4的正方体ABCDA1B1C1D1中,EAA1的中点,FAE的中点.
(1)求证:CE∥平面BDF
(2)求三棱锥EBDF的体积.

共享时间:2024-07-08 难度:2 相似度:1
169632. (2024•西安三中•高二上期末) 如图,BC是⊙O的直径,BC=2,点A上的一个动点,过点APA垂直⊙O所在的平面,且PA=1.
(1)当三棱锥OPAC体积最大时,求直线PO与平面PAC所成角的大小;
(2)当点A上靠近点C的三等分点时,求二面角APOB的正弦值.

共享时间:2024-02-04 难度:2 相似度:1
169550. (2024•铁一中学•高二上期末) 如图,在四棱锥PABCD中,底面ABCD为直角梯形,ADBC.∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PAPD=2,BCAD=1,CD
(1)求证:平面MQB⊥平面PAD
(2)若二面角MBQC的大小为30°,求直线QM与平面PAD所成角的正弦值.

共享时间:2024-02-22 难度:2 相似度:1
169352. (2024•师大附中•高一下期末) 如图,在四棱锥PABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,,点MN分别为DPAB的中点.
(1)求证:MN∥平面PBC
(2)求证:平面PBC⊥平面ABCD
(3)求CM与平面PAD所成角的正弦值.

共享时间:2024-07-09 难度:2 相似度:1
169525. (2024•铁一中学•高三上期末) 如图,已知三棱柱ABCA1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1AA1CACEF分别是ACA1B1的中点.
(Ⅰ)证明:EFBC
(Ⅱ)求直线EF与平面A1BC所成角的余弦值.

共享时间:2024-02-27 难度:2 相似度:1

dygzsxyn

2022-07-24

高中数学 | 高一下 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!