首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

168149. (2023•西工大附中•六模) 如图,四棱锥PABCD底面为菱形,ABAP=2,PA⊥底面ABCDEF分别是线段PBPD的中点,G是线段PC上的一点.
(1)若,证明直线AG在平面AEF内;
(2)若直线AG与平面AEF所成角的正弦值为,试确定的值.

共享时间:2023-05-19 难度:1
[考点]
直线与平面所成的角,
[答案]
(1)证明见解析;
(2)
[解析]
(1)证明:取BC的中点M,则AMAD,分别以AMADAP所在直线为xyz轴建立空间直角坐标系Axyz

A(0,0,0),P(0,0,2),F(0,1,1),
Gxyz),因为
所以

设平面AEF的法向量
,所以

所以,即
又因为A∈平面AEF
所以直线AG在平面AEF内.
(2)设
所以,即

解得

[点评]
本题考查了"直线与平面所成的角,",属于"常考题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
167279. (2023•长安区一中•高三上五月) 如图,△ABCABBC=2,∠ABC=90°,EF分别为ABAC边的中点,以EF为折痕把AEF折起,使点A到达点P的位置,且PBBE
(Ⅰ)证明:EF⊥平面PBE
(Ⅱ)设N为线段PF上动点,求直线BN与平面PCF所成角的正弦值的最大值.

共享时间:2023-12-29 难度:1 相似度:2
170190. (2023•高新一中•高一下期末) 如图,在四棱锥PABCD中,ADBCABBC=2,ADPD=4,∠BAD=60°,∠ADP=120°,点EPA的中点.
(1)求证:BE∥平面PCD
(2)若平面PAD⊥平面ABCD,求直线CD与平面PAC所成角的正弦值.

共享时间:2023-07-11 难度:2 相似度:1.5
169145. (2020•西工大附中•二模) 已知三棱柱ABCA1B1C1中,AA1⊥平面ABC,∠BAC=120°,EF分别是BCA1C1的中点.
(1)证明:EF∥平面ABB1
(2)求直线B1E与平面A1BE所成角的正弦值.

共享时间:2020-03-17 难度:2 相似度:1.5
169214. (2025•师大附中•高二上期末) 已知四棱柱ABCDA1B1C1D1的所有棱长相等,且∠A1AB=∠A1AD=∠BAD=60°.
①证明:平面A1AC⊥平面A1BD
②求直线BC1与平面A1AC所成角的正弦值?

共享时间:2025-02-11 难度:2 相似度:1.5
169352. (2024•师大附中•高一下期末) 如图,在四棱锥PABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,,点MN分别为DPAB的中点.
(1)求证:MN∥平面PBC
(2)求证:平面PBC⊥平面ABCD
(3)求CM与平面PAD所成角的正弦值.

共享时间:2024-07-09 难度:2 相似度:1.5
169525. (2024•铁一中学•高三上期末) 如图,已知三棱柱ABCA1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1AA1CACEF分别是ACA1B1的中点.
(Ⅰ)证明:EFBC
(Ⅱ)求直线EF与平面A1BC所成角的余弦值.

共享时间:2024-02-27 难度:2 相似度:1.5
169550. (2024•铁一中学•高二上期末) 如图,在四棱锥PABCD中,底面ABCD为直角梯形,ADBC.∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PAPD=2,BCAD=1,CD
(1)求证:平面MQB⊥平面PAD
(2)若二面角MBQC的大小为30°,求直线QM与平面PAD所成角的正弦值.

共享时间:2024-02-22 难度:2 相似度:1.5
169632. (2024•西安三中•高二上期末) 如图,BC是⊙O的直径,BC=2,点A上的一个动点,过点APA垂直⊙O所在的平面,且PA=1.
(1)当三棱锥OPAC体积最大时,求直线PO与平面PAC所成角的大小;
(2)当点A上靠近点C的三等分点时,求二面角APOB的正弦值.

共享时间:2024-02-04 难度:2 相似度:1.5
170081. (2023•铁一中学•高一下期末) 如图,在四棱锥PABCD中,ADBCABAC,∠BAD=150°,∠PDA=30°.
(1)证明:PA⊥平面ABCD
(2)在线段PD上是否存在一点F,使直线CF与平面PBC所成角的正弦值等于

共享时间:2023-07-06 难度:2 相似度:1.5
166430. (2024•西光中学•高二上一月) 在四棱锥PABCD中,PD⊥底面ABCDCDABADDCCB=1,AB=2,DP
(1)证明:BDPA
(2)求PD与平面PAB所成的角的正弦值.

共享时间:2024-10-12 难度:2 相似度:1.5
168871. (2021•西工大附中•十模) 如图,在四棱锥PABCD中,△ABD是边长为2的等边三角形,ADCDABBCQ为四边形ABCD的外接圆的圆心,PQ⊥平面ABCDM在棱PA上,且AM=2MP
(1)证明:MQ∥平面PBD
(2)若MQ与平面ABCD所成角为60°,求PC与平面PAD所成角的正弦值.

共享时间:2021-07-03 难度:2 相似度:1.5
170325. (2022•长安区一中•高一下期末) 如图所示,在四棱锥PABCD中,PA⊥平面PCD,底面ABCD满足ADBCAPABBCAD=4,∠ABC=90°,EAD的中点,ACBE的交点为O
(1)设H是线段BE上的动点,证明:三棱锥HPCD的体积是定值;
(2)(文科生做)求四棱锥PABCD的体积.
(理科生做)求直线BC与平面PBD所成角的余弦值.

共享时间:2022-07-24 难度:2 相似度:1.5
170391. (2022•长安区一中•高二下期末) 如图1,在矩形ABCD中,BC=2AB=2,EAD中点,将△CDE沿直线CE翻折到△CPE的位置,使得PB,如图2.

(1)求证:面PCE⊥面ABCE
(2)求PC与面ABP所成角的正弦值.
共享时间:2022-07-21 难度:2 相似度:1.5
170442. (2022•长安区一中•高二上期末) 如图,四棱台ABCDEFGH的底面为正方形,DH⊥平面ABCDEHDHAD=1.
(1)求证:AE∥平面BDG
(2)若平面BDG∩平面ADHm,求直线m与平面BCG所成角的正弦值.

共享时间:2022-02-23 难度:2 相似度:1.5
170815. (2020•西安中学•高二上期末) 如图,在直三棱柱ABCA1B1C1中,已知AA1=2,ACBC=1,且ACBCMA1B1的中点.
(Ⅰ)求证:CB1∥平面AC1M
(Ⅱ)设AC与平面AC1M的夹角为θ,求sinθ.

共享时间:2020-02-15 难度:2 相似度:1.5

dygzsxyn

2023-05-19

高中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!