[解析]
解:(Ⅰ)当a=2时,f(x)=ex﹣2x+sinx﹣1,则f′(x)=ex﹣2+cosx,
可得f″(x)=ex﹣sinx,
故x∈(﹣∞,0]时,可得ex≤1,故f′(x)≤﹣1+cosx≤0,
故f(x)在(﹣∞,0]内单调递减,
当x∈(0,+∞)时,ex>1,故f″(x)>1﹣sinx≥0,
故f′(x)在(0,+∞)上单调递增,故f′(x)>f′(0)=0,
故f(x)在(0,+∞)上单调递增,
综上,f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;
(Ⅱ)证明:当x=0时,f(0)=0,故x=0是f(x)的一个零点,
由f′(x)=ex﹣a+cosx,令g(x)=ex﹣a+cosx,可得g′(x)=ex﹣sinx,
∵1≤a≤2,
①当x∈(0,+∞)时,g′(x)=ex﹣sinx>e0﹣sinx≥0,f′(x)在(0,+∞)单调递增,
则 f′(x)>f′(0)=2﹣a>0,f(x)在(0,+∞)单调递增,f(x)>f(0)=0,
故f(x)在(0,+∞)无零点,
②当x∈(﹣∞,﹣π]时,﹣ax≥π,有f(x)≥ex+π+sinx﹣1>0,
故f(x)在(﹣∞,﹣π]上无零点,
③当x∈(﹣π,0)时,sinx<0,g′(x)>0,f′(x)在(﹣π,0)单调递增,
又f′(0)=2﹣a>0,f′(﹣π)=e﹣π﹣1﹣a<0,
故存在唯一x0∈(﹣π,0),使得f′(x0)=0,
当x∈(﹣π,x0)时,f′(x)<0,f(x)在(﹣π,x0)单调递减,
当x∈(x0,0)时,f′(x)>0,f(x)在(x0,0)单调递增,
又f(﹣π)=e﹣π+aπ﹣1>0,f(x0)<f(0)=0,
故f(x)在(﹣π,0)有1个零点,
综上,当1≤a<2时,f(x)有2个零点.