首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

4689. (2018•陕西省•模拟) (1)如图1,四边形ABCD是矩形,试在AD边上找一点P,使△BCP为等腰三角形;
(2)如图2,矩形ABCD中,AB=13,AD=12,点EAB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点QCD边上一点,求PQ的最值;
问题解决:
(3)如图3,四边形ABCD中,ADBC,∠C=90°,AD=3,BC=6,DC=4,点EAB边上,BE=2,点P是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值.
共享时间:2018-06-25 难度:5
[考点]
等腰三角形的判定与性质,矩形的性质,四边形综合题,平行四边形与线段最值问题,隐形圆专题,定点径长与线段最值问题,
[答案]
答案详见解析
[解析]
解:(1)如图1中,在AD边取AD的中点P1,则BPCP,或分别以CB为圆心,BC长为半径画弧,分别交ADP2P3,则△P1BC,△P2BC,△P3BC为等腰三角形;


(2)如图2中,以E为圆心,5为半径作⊙E,⊙EBCP,连接PD,当点Q与点D重合时,PQ的值最大,

在Rt△PBE中,PB=4
最大值PQ
EQ′⊥CDEQ′交⊙EP′,此时PQ′的值最小,最小值=12﹣5=7.

(3)如图3中,以E为圆心,2为半径作⊙E,作EHACHBJACJAGBCG

在Rt△ADC中,∵AD=3,CD=4,
AC=5,
∵四边形ADCG是矩形,
AGCD=4,ADGC=3,
BC=6,
BGBCCG=3,
AB=5,
SABCBCAGACBJ
BJ
EHBJ


EH
∵点P是四边形ABCD内或边上一点,
∴点PB重合时,四边形ADCP的面积最大,
∴四边形ADCP的面积的最大值=SADC+SABC×3×4+×6×4=18,
EH交⊙EP′,连接AP′,CP′,此时四边形ADCP′的面积最小,最小值=6+×5×
[点评]
本题考查了"等腰三角形的判定与性   矩形的性质   四边形综合题   平行四边形与线段最值问题   隐形圆专题   定点径长与线段最值问题   ",属于"压轴题",熟悉知识点是解题的关键
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
212524. (2025•西工大附中•一模) (1)如图1,四边形ABCD的对角线AC,BD互相垂直,其中对角线BD长为20cm,AC长为15cm,垂足为E,则四边形ABCD的面积为        cm2
(2)如图2,矩形ABCD中,AD=6cm,AB=4cm,EF∥AD,点G,H分别是BC,AD上任一点,求四边形EGFH的面积.
(3)如图3,四边形ABCD放在了一组平行线中,已知BD=6cm,四边形ABCD的面积为24cm2,则相邻两条平行线间的距离为多少厘米.
德优题库
共享时间:2025-03-05 难度:1 相似度:1.17
190494. (2025•碑林区•九上期末) 【问题提出】
(1)如图1,ADBE相交于点C,连接ABDE,∠A=∠E,若AB的长为21,求DE的长;
【问题解决】
(2)如图2,四边形ABCD是一个植物园的花卉区,经测量,ABBCCDAD,工作人员计划将该花卉区进行扩建,在对角线AC上取一点E,在边BC的延长线上取一点F,连接BEEFDFEFCD交于点G,根据工作人员的规划要求,BEEF相等,EFCD互相垂直,在扩建部分(△CDF区域内)新增加一种花卉,请你判断∠CDF与∠ADC之间的数量关系,并说明理由.

 
共享时间:2025-02-05 难度:1 相似度:1.17
190594. (2025•交大附中•九上期末) 【问题初探】
如图1,△ABC中,∠C=90°,ACBC=2,EAB的中点,PBC边上的一动点,则PA+PE的最小值为                 
【应用拓展】
某校为贯彻落实教育部《关于全面加强中小学生劳动教育的意见》,更好地培养学生的劳动兴趣和劳动技能,在校园开辟了一块劳动田.已知劳动田为如图2所示的四边形ABCD,经测量,∠B=30°,∠C=60°,AB=75mBC=100mCD=40m.现在学校计划在劳动田内设计一个三角形的花圃△EMFEFBC边上.为保证整体设计美观实用,要求BECF=40m,且满足∠EMF=60°.为了给学生提供休息区域,计划在AB边上建造凉亭N和两条小路DNNM.两条小路的长度之和是否存在最小值?若存在,求出最小值,并计算凉亭N到点B的距离;若不存在,请说明理由.(参考数据:

 
共享时间:2025-02-14 难度:1 相似度:1.17
191817. (2023•经开一中•九上二月) 问题提出
(1)如图1,在Rt△ABC中,CA=CB,∠ACB=90°,P为此三角形内的一点,且PB=1,PC=2,PA=3,将△CPB绕点C沿顺时针方向旋转90°至△CQA,则∠BPC的度数为        
问题探究
(2)如图2,在四边形ACBD中,∠ACB=∠ADB=90°,AC=BC,探究线段AD、BD、CD之间的数量关系并写出解答过程.
问题解决
(3)如图3是某公园内“少儿活动中心”的设计示意图,已知四边形ACBD中,∠ACB=∠ADB=90°,AC=BC,AB=70m,DC平分∠ADB交AB于点P,PE⊥AD于点E,PF⊥BD于点F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,若AP的长为30m,则阴影部分的面积为        m2
德优题库
共享时间:2023-12-22 难度:1 相似度:1.17
191866. (2024•经开一校(原经发)•八下一月) 【问题引出】
(1)如图1.在△ABC中,AB=BC=5,AC=8,若D为AC边上一点,BD平分△ABC的面积,则BD的长为        
【问题延伸】
(2)如图2,在△ABC中,∠ABC=90°,AB=BC=4,点D在BC边上,且BD=1,若P为AC边上一点,DP平分△ABC 的面积,求AP的长.
【问题拓展】
(3)如图3,四边形OABC在平面直角坐标系中,点A,B在第一象限,点C在x轴上,已知∠AOC=60°,∠OAB=150°.∠ABC=120°.OA=2,OC=10.若P为OC边上一点.且BP平分四边形OABC的面积,求点P的坐标.
德优题库
共享时间:2024-04-13 难度:1 相似度:1.17
192152. (2024•高新一中•八下一月) 【问题出示】
(1)如图①,等腰△ABC中,∠BAC=30°,BC=BA=16,点M是直线AC上的动点,线段BM的最小值是        
德优题库
【问题探究】
(2)如图②,线段BM最短时,在(1)的条件下,线段BN是△ABM的角平分线,点P、Q分别在边BN、BM上运动,连接MP、QP,MP+QP的最小值是
【问题拓展】
(3)如图③,线段BM最短时,在(1)的条件下,点E在边CM上运动,连接BE,将线段BE绕点B顺时针旋转60°,得到线段BF,连接MF,求线段MF的最小值.
【问题解决】
按照住建部制定的楼间距国家标准,南北朝向的小区,各栋楼之间的距离不小于前排楼高的0.7倍,例如:前排房屋的楼高是20米,那么后排房屋与前排房屋的距离至少要14米才符合要求.
(4)如图④,是某居民小区的部分平面示意图,四边形ABCD各边长都为90米,且两组对边分别平行,∠B=120°,DE长30米,AB边上任意一点F,计划在线段EF、FG、DG上修建三条小路,点G处修建业主活动楼,其中EF=FG,且∠EFG=60°.小区最南边一排(即线段AD处)楼高70米,当线段DG取最小值时,点G处的业主活动楼到线段AD处楼房的距离是否符合楼间距标准?请说明理由.
共享时间:2024-04-21 难度:1 相似度:1.17
192228. (2024•高新三中•八下二月) 问题提出:
(1)如图1,在△ABC中,BC=4,点D、E分别是AB、AC的中点,则DE的长为        
问题探究:
(2)如图2,在△ABC中,∠B=60°,点Q在BC上,CQ=12,点P在AB上,AP=4,连接PQ,E、F分别为AC、PQ的中点,求EF的长度?
问题解决:
(3)西安高新区为了进一步提升周边居民的居住环境,拟在一个长方形的草坪ABCD内对角线AC右侧修建一个三角形池塘△CMN.如图3,∠BAC=64°,∠MCN=26°,∠MNC=90°,A为草坪入口,B为草坪出口,在人行道AM的中点E处有一个凉亭,在池塘N处是一个观景台.游客从凉亭到出口的距离与从凉亭到观景台的距离相等吗?为什么?
德优题库
共享时间:2024-06-15 难度:1 相似度:1.17
192295. (2023•高新一中•九上一月) 德优题库如图,已知BD是矩形ABCD的对角线.
(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明);
(2)连接BE、DF,问四边形BEDF是什么四边形?请说明理由.
共享时间:2023-10-28 难度:1 相似度:1.17
192301. (2023•高新一中•九上一月) 问题提出
(1)如图1,在Rt△ABC中,CA=CB,∠ACB=90°,P为此三角形内的一点,且PB=1,PC=2,PA=3,将△CPB绕点C沿顺时针方向旋转90°至△CQA,则∠BPC的度数为        
问题探究
(2)如图2,在四边形ACBD中,∠ACB=∠ADB=90°,AC=BC,探究线段AD、BD、CD之间的数量关系并写出解答过程.
问题解决
(3)如图3是某公园内“少儿活动中心”的设计示意图,已知四边形ACBD中,∠ACB=∠ADB=90°,AC=BC,AB=70m,DC平分∠ADB交AB于点P,PE⊥AD于点E,PF⊥BD于点F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,若AP的长为30m,则阴影部分的面积为        m2
德优题库
共享时间:2023-10-28 难度:1 相似度:1.17
192372. (2024•西工大附中•七下二月) 问题提出
(1)如图①,四边形ABCD中,E在CD边上,AD=AE、AB=AC,∠DAE=∠BAC=40°,连结BE交AC于点P,若∠BPC=75°;则∠BCD=       
问题探究
(2)如图②,已知等边三角形ABC,AB=8,P是其外一点,且∠APB=120°,PC=9,求四边形APBC的周长.
问题解决
(3)某市园林绿化部门为提升城市形象,绿化美化环境,拟在富样路一拆迁后的空地上新建一个家门口的“口袋公园”,设计形状大致为四边形ABCD,如图③所示.其中AB∥CD,∠C=90°,BC=CD,AD段临街道有足够长度,E是小道AB上某小区的入口(点E不在点B处),且AE=200米,设计人员准备将公园分成△ADE,△BDE与△BCD三大部分,F是△ADE内一标志点,此处将栽植一棵风景大树,设计∠AEF=∠DAF=45°,AF⊥DF,△ADE内部种植三种不同类的草坪,平均每平方米约5元,留出适当大小的△BDE区域作为休闲健身区,其内安装健身器材需28000元,△BCD内部种植月季等花卉,平均每平方米约需8元,请你预算满足上述条件的建设费用大致需多少元?(不考虑其他花费)
德优题库
共享时间:2024-06-28 难度:1 相似度:1.17
192605. (2024•翱翔中学•七下一月) 发现问题:
(1)如图①,小明在一张纸上画了一条线段PO,他把PO绕点O顺时针方向旋转60°得到线段OQ,连接PQ,通过查资料学习知道了△OPQ为等边三角形,然后他找到OP上一点H,把△OPQ沿QH折叠,发现两侧能完全重合,由此得到以下关系式:
PH        OH;PQ        QH.(填=,>,<);
探究问题:
(2)如图②,在四边形ABCD中,连接AC,E为AD上一点,AC与BE互相平分,且交于点F,已知△ACD的面积为80,AD=10,求BE的最小值;
解决问题:
(3)如图③,某市文旅部门拟在黄河沿岸围建一个正方形的湿地公园ABCD,AB=13km,点E为AB上一个休息驿站,BE=3km,F为BC上任意一点,根据实际情况,计划设计一个等边△EFG的停车区域,A为入口,让车辆沿AG驶入到停车区,F为出口,若修建一定宽度的公路每公里10万元,请问修建AG路段的费用有无最小值?若有请求出;若没有请说明理由.
德优题库
共享时间:2024-04-25 难度:1 相似度:1.17
193010. (2023•西安二十三中•九上二月) 如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段              ;S矩形AEFG:S▱ABCD=       
(2)平行四边形ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.
德优题库
共享时间:2023-12-22 难度:1 相似度:1.17
195879. (2025•曲江一中•九上期末) 德优题库
问题提出
(1)如图1,在菱形ABCD中,∠B=30°,AB=8,E是AB的中点,点F在AD上且AF=5,求五边形BCDFE的面积.
问题解决
(2)为了优化美化人居生态环境.如图2所示,某城市现规划建一个五边形公园,记为五边形ABCDE.按设计要求,要在公园内挖一个四边形人工湖记为四边形ONMP,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,AM=OC.已知五边形ABCDE中,∠A=∠C=150°,∠B=30°,AB=BC=800m,AE=700m,CD=600m,为了安全起见,AM<AE,PD<CD.满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.是否存在符合设计要求的面积最小的四边形ONMP?若存在,求出面积最小值及这时AN的距离;若不存在,请说明理由.
共享时间:2025-02-13 难度:1 相似度:1.17
190372. (2025•西工大附中•九上期末) (1)如图①,Rt△ACB中,∠ACB=90°,AC=BC=6.点P为AB上动点,则CP长度的最小值为        
(2)如图②,Rt△ACB中,∠ACB=90°,AC=4,BC=3.点P为平面内一点,CP=1,PQ⊥AB于点Q.求PQ长度最小值.
(3)如图③,光明公司在一块四边形荒地进行观赏种植实验,经过测量发现,四边形ABCD中,AB=CD=40米,AD=BC=30米,∠ABC=90°.种植方案是:将四边形ABCD分成一些区域种植不同的观赏作物,其中点E、F在AB、DC上,AE=2DF,CQ⊥EF于点P,交AD于点Q.现决定先对△ABP区域进行种植实验,请你确定△ABP的面积是否有最小值,若有最小值,求出△ABP的面积最小值;若没有最小值,请说明理由.
德优题库
共享时间:2025-02-06 难度:1 相似度:1.17
196034. (2025•鄠邑区•九上期末) 【提出问题】(1)如图1,正方形ABCD的边长为2,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF绕点O旋转,∠EOF的两边分别与正方形ABCD的边BCCD交于点E和点F(点F与点C,点D不重合),求出四边形OECF的面积;
【问题解决】(2)如图2,一个菱形菜园ABCDACBD为人行步道,且交于点O.要在菜园的下方建一四边形储藏间OECF,已知点EBC上,点FCD上,∠ABC=∠EOF=60°.若四边形储藏间OECF的占地面积为(人行步道的面积忽略不计),要在菱形菜园ABCD围一圈篱笆,则需要篱笆多少m
共享时间:2025-02-28 难度:1 相似度:1.17

jdfz514

2018-06-25

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 763
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!