首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

236243. (2017•西安中学•高二上期末) 如图,在四棱锥PABCD中,底面ABCD是边长为4的菱形,∠ABC=60°,PA⊥面ABCDPA=4,F是棱PA上一点,且AF=1,EPD的一个靠近D点的三等分点.
(1)求证:CE∥面BDF
(2)求平面BDF与平面PAD所成的锐二面角的余弦值.

共享时间:2017-02-20 难度:2
[考点]
直线与平面平行,二面角的平面角及求法,
[答案]
见试题解答内容
[解析]
(本题12分)
解:以点A为坐标原点,以ADAP所在的直线分别为y轴、z轴,建立空间直角坐标系如图.

A(0,0,0),D(0,4,0),P(0,0,4),F(0,0,1),
(1)
设面BFD的法向量为,又
所以y=1得
所以
CE⊄面BDF所以CE∥面BDF
(2)由(1)面BFD的法向量为
又面PAD的法向量可取
所以

[点评]
本题考查了"直线与平面平行,二面角的平面角及求法,",属于"必考题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
166388. (2024•长安区一中•高二上二月) 如图,在三棱柱ABCA1B1C1中,侧面ACC1A1是矩形,ACABABAA1=2,AC=3,∠A1AB=120°,EF分别为棱A1B1BC的中点,G为线段CF的中点.
(1)证明:A1G∥平面AEF
(2)求二面角AEFB的余弦值.

共享时间:2024-12-18 难度:2 相似度:2
168549. (2021•西安中学•六模) 如图,直三棱柱ABCA1B1C1中,ACBCAA1=2,MN分别为ABB1C1的中点.
(1)求证:MN∥平面ACC1A1
(2)若B1M=3,求二面角B1A1MN的余弦值.

共享时间:2021-05-15 难度:2 相似度:2
167602. (2023•新城一中•高二上二月) 如图,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCDEPD的中点.
(1)证明:PB∥平面AEC
(2)若AB=1,AD=2,AP=2,求二面角DAEC的平面角的余弦值.

共享时间:2023-12-19 难度:2 相似度:2
168342. (2022•长安区一中•三模) 已知三棱柱ABCA1B1C1,点O为棱AB的中点.
(Ⅰ)求证:BC1∥平面A1CO
(Ⅱ)若△ABC是等边三角形,且ABAA1,∠A1AB=60°,平面AA1B1B⊥平面ABC,求二面角AA1CB的余弦值.

共享时间:2022-04-07 难度:2 相似度:2
167452. (2023•雁塔二中•高二上二月) 如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.
(1)证明:MN∥平面C1DE
(2)求二面角AMA1N的正弦值.

共享时间:2023-12-24 难度:2 相似度:2
166875. (2024•西安八十三中•高二上二月) 如图,在三棱柱ABCA1B1C1ACCB=2,AA1=2,且ACCBAA1⊥底面ABCEAB中点.
(1)求证:BC1∥平面A1CE
(2)求二面角A1CEA的余弦值.

共享时间:2024-12-23 难度:2 相似度:2
167302. (2023•长安区一中•高三上四月) 如图,直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB=2.
(1)求证:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.

共享时间:2023-02-23 难度:2 相似度:2
167919. (2024•西安工业大学附中•六模) 在如图所示的几何体中,四边形ABCD是正方形,四边形ADPQ是梯形,PDQA,平面ADPQ⊥平面ABCD,且ADPD=2QA=2.
(1)求证:QB∥平面PDC
(2)求平面CPB与平面PBQ所成角的大小;
(3)已知点H在棱PD上,且异面直线AHPB所成角的余弦值为,求点A到平面HBC的距离.

共享时间:2024-05-20 难度:3 相似度:1.67
167694. (2024•西安中学•五模) 如图所示,三棱柱ABCA1B1C1所有棱长都为2,B1BC=60°,OBC中点,DA1CAC1交点.
(1)证明:CD∥平面AOB1
(2)证明:平面BCD⊥平面AB1C1
(3)若直线DB1与平面AOB1所成角的正弦值为,求二面角A1CB1C1的平面角的余弦值.

共享时间:2024-05-09 难度:3 相似度:1.67
167215. (2023•周至四中•高二上一月) 直三棱柱ABCA1B1C1中,AA1ABAC=2,ACABDA1B1中点,EAA1中点,FCD中点.
(1)求证:EF∥平面ABC
(2)求直线BE与平面CC1D夹角的正弦值;
(3)求平面A1CD与平面CC1D夹角的余弦值.

共享时间:2023-10-15 难度:3 相似度:1.67
167564. (2023•关山中学•高二上一月) 如图,在直三棱柱ABCA1B1C1中,AA1AC=4,AB=3,BC=5,点D是线段BC的中点.请用空间向量的知识解答下列问题:
(1)求证:ABA1C
(2)试求二面角DCA1A的余弦值.

共享时间:2023-10-16 难度:1 相似度:1.5
19772. (2021•陕西省•乙卷) 如图,四棱锥PABCD的底面是矩形,PD⊥底面ABCDPDDC=1,MBC中点,且PBAM
(1)求BC
(2)求二面角APMB的正弦值.
共享时间:2021-06-21 难度:4 相似度:1
167940. (2023•师大附中•三模) 在三棱锥SABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABCMN分别为ABSB的中点.
(1)证明:ACSB
(2)求二面角N﹣CMB正弦值的大小.

共享时间:2023-04-08 难度:2 相似度:1
167762. (2024•西安一中•三模) 如图,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABCABBCDAC的中点,AA1AB=2,BC=3.
(1)求三棱柱ABCA1B1C1的表面积;
(2)求证:AB1∥平面BC1D

共享时间:2024-04-15 难度:2 相似度:1
167877. (2024•西工大附中•模拟) 如图,四棱锥PABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为棱PC上的动点,且=λ(λ∈[0,1]).
(1)求证:△PBC为直角三角形;
(2)试确定λ的值,使得二面角PADM的平面角余弦值为

共享时间:2024-03-05 难度:2 相似度:1

dygzsxyn

2017-02-20

高中数学 | 高二上 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 3
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!