首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

167694. (2024•西安中学•五模) 如图所示,三棱柱ABCA1B1C1所有棱长都为2,B1BC=60°,OBC中点,DA1CAC1交点.
(1)证明:CD∥平面AOB1
(2)证明:平面BCD⊥平面AB1C1
(3)若直线DB1与平面AOB1所成角的正弦值为,求二面角A1CB1C1的平面角的余弦值.

共享时间:2024-05-09 难度:3
[考点]
直线与平面平行,平面与平面垂直,二面角的平面角及求法,
[答案]
(1)(2)见解析;(3)
[解析]
(1)证明:取AB1中点E,连接DEBEOE
因为DE分别为AC1AB1的中点,所以DEB1C1,且
所以DECO,且DECO,即四边形DEOC为平行四边形,所以CDOE
又因为OE⊂平面AOB1CD⊄平面AOB1,所以CD∥平面AOB1
(2)证明:由题意知,AB1的中点,BCDE四点共面,
所以OEAB1,且BEAB1BEOE⊂平面BCD,所以AB1⊥平面BCD
AB1⊂面AB1C1,所以平面BCD⊥平面AB1C1
(3)解:由题意知,BCAO,且BCOB1AOOB1⊂平面AOB1
所以BC⊥平面AOB1,所以DE⊥平面AOB1,∠DB1E为直线DB1与平面AOB1所成角,
,所以
因为B1C1⊥面AOB1,所以△AOB1为直角三角形,所以
在△AOB1中,
O为原点,作OZ⊥平面BCC1B1,以方向为xyz轴正方向,建立空间直角坐标系,如图所示:
,所以
所以
设平面A1CB1的一个法向量为,则,即
z=1,解得,所以平面C1CB1的一个法向量为
记二面角A1CB1C1的平面角为θ,由图可得θ为锐角,




[点评]
本题考查了"直线与平面平行,平面与平面垂直,二面角的平面角及求法,",属于"难典题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
167900. (2024•西安八十九中•三模) 如图,已知AC是圆O的直径,PA⊥平面ABCDEPC的中点,∠DAC=∠AOB
(1)证明:BE∥平面PAD
(2)求证:平面BEO⊥平面PCD

共享时间:2024-04-02 难度:2 相似度:1.67
169699. (2024•西安八十五中•高一下期末) 如图1,平面四边形ABCD中,ABACABACACCDEBC的中点,将△ACD沿对角线AC折起,使CDBC,连接BD,得到如图2所示的三棱锥DABC
(1)证明:平面ADE⊥平面BCD
(2)已知直线DE与平面ABC所成的角为,求二面角ABDC的余弦值.

共享时间:2024-07-08 难度:2 相似度:1.67
167452. (2023•雁塔二中•高二上二月) 如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.
(1)证明:MN∥平面C1DE
(2)求二面角AMA1N的正弦值.

共享时间:2023-12-24 难度:2 相似度:1.67
167602. (2023•新城一中•高二上二月) 如图,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCDEPD的中点.
(1)证明:PB∥平面AEC
(2)若AB=1,AD=2,AP=2,求二面角DAEC的平面角的余弦值.

共享时间:2023-12-19 难度:2 相似度:1.67
168802. (2021•西工大附中•十三模) 如图,已知等边△ABC中,EF分别为ABAC边的中点,MEF的中点,NBC边上一点,且CNBC,将△AEF沿EF折到△AEF的位置,使平面AEF⊥平面EFCB
(1)求证:平面AMN⊥平面ABF
(2)求二面角EAFB的余弦值.

共享时间:2021-07-22 难度:2 相似度:1.67
171008. (2024•华清中学•高二上期中) 如图,在三棱柱ABCA1B1C1ACCB=2,AA1=2,且ACCBAA1⊥底面ABCEAB中点.
(1)求证:BC1∥平面A1CE
(2)求二面角A1CEA的余弦值.

共享时间:2024-11-22 难度:2 相似度:1.67
169761. (2023•师大附中•高二下期末) 如图,在四棱锥PABCD中,底面ABCD为菱形,ACPEPAPDE为棱AB的中点.
(1)证明:平面PAD⊥平面ABCD
(2)若PAAD,∠BAD=60°,求二面角EPDA的正弦值.

共享时间:2023-07-24 难度:2 相似度:1.67
170896. (2024•师大附中•高二上期中) 如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,ABAFtM是线段EF的中点.
(1)求证:AM∥平面BDE
(2)若t=1,求二面角ADFB的大小;
(3)若线段AC上总存在一点P,使得PFBE,求t的最大值.

共享时间:2024-11-18 难度:2 相似度:1.67
168895. (2021•高新一中•二模) 如图,在△ABC中,∠C=90°,ACBCa,点PAB上,PEBCACEPFACBCF.沿PE将△APE翻折成△APE,使平面APE⊥平面ABC;沿PF将△BPF翻折成△BPF,使平面BPF⊥平面ABC
(Ⅰ)求证:BC∥平面APE
(Ⅱ)设,当λ为何值时,二面角CAB′﹣P的大小为60°?

共享时间:2021-03-23 难度:2 相似度:1.67
168687. (2021•西安中学•仿真) 如图,在多面体ABCDEF中,四边形ABCD是边长为2的菱形,EBEDEFAC
(1)求证:平面BDF⊥平面ACFE
(2)若EAEC,点E到平面ABCD的距离为,求平面ABE与平面BDF所成锐二面角的余弦值.

共享时间:2021-06-10 难度:2 相似度:1.67
169918. (2023•长安区一中•高二下期末) 图1是直角梯形ABCDABCD,∠D=90°,AB=4,DC=6,,以BE为折痕将△BCE折起,使点C到达C1的位置,且,如图2.
(1)证明:平面BC1E⊥平面ADEB
(2)若,求二面角PBEA的大小.

共享时间:2023-07-19 难度:2 相似度:1.67
168594. (2021•西安中学•九模) 如图,AB是半圆O的直径,C是半圆O上异于AB的一个动点,CD⊥平面ABCBECD,且BECD=2,AB=4.
(1)证明:平面ADE⊥平面ACD
(2)当C为半圆弧的中点时,求二面角DAEB的正弦值.

共享时间:2021-06-23 难度:2 相似度:1.67
170664. (2021•长安区一中•高二上期末) 如图,在等腰直角三角形PAD中,∠A=90°,AD=8,AB=3,BC分别是PAPD上的点,且ADBCMN分别为BPCD的中点,现将△BCP沿BC折起,得到四棱锥PABCD,连结MN

(1)证明:MN∥平面PAD
(2)在翻折的过程中,当PA=4时,求二面角BPCD的余弦值.
共享时间:2021-02-18 难度:2 相似度:1.67
167988. (2023•师大附中•十一模) 如图,ABCD分别是圆台上、下底面的直径,且ABCD,点E(异于DC两点)是下底面圆周上一点,AB=2,圆台的高为
(1)证明:不存在点E使平面AEC⊥平面ADE
(2)若DECE=4,求二面角DAEB的余弦值.

共享时间:2023-07-16 难度:2 相似度:1.67
170596. (2021•西安中学•高二上期末) 如图1,在△MBC中,BM=2BC=4,BMBCAD别为棱BMMC的中点,将△MAD沿AD折起到△PAD的位置,使∠PAB=90°,如图2,连结PBPC

(1)求证:平面PAD⊥平面ABCD
(2)线段PC上是否存在一点E,使二面角EADP的余弦值为?若存在,求出的值;若不存在,请说明理由.

共享时间:2021-02-14 难度:2 相似度:1.67

dygzsxyn

2024-05-09

高中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 3
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!