首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

168079. (2023•西工大附中•十三模) 如图,已知三棱柱ABCA1B1C1,∠ACB=90°,AC1A1CD为线段A1C上的动点,AC1BD
(1)求证:平面ACC1A1⊥平面ABC
(2)若AA1ACD为线段A1C的中点,AC=2BC=2,求B1D与平面A1BC所成角的正弦值.

共享时间:2023-07-27 难度:2
[考点]
平面与平面垂直,直线与平面所成的角,
[答案]
(1)证明见解析;
(2)
[解析]
证明:(1)因为AC1A1CAC1BDA1CBDDACBD⊂平面A1BC
所以AC1⊥平面A1BC
BC⊂平面A1BC
所以AC1BC
又∠ACB=90°,即BCAC,而ACA1CAACA1C⊂平面ACC1A1
所以BC⊥平面ACC1A1
又因为BC⊂平面ABC
,所以平面ACC1A1⊥平面ABC
(2)解:由(1)知平面ACC1A1⊥平面ABC
又平面ACC1A1∩平面ABCACAA1ACAA1⊂平面ACC1A1
所以由线面垂直判定定理可,AA1⊥平面ABC
A1AC1C
所以CC1⊥平面ABC
所以CACBCC1两两垂直,
C为坐标原点,的方向分别为x轴、y轴、x轴的正方向,
建立空间直角坐标系如图所示:

因为AA1AC
所以四边形ACC1A1为矩形,
又因为AC1A1C,所以四边形ACC1A1为正方形.
因为AC=2,BC=1,所以CC1=2,
所以C(0,0,0),B(0,1,0),A1(2,0,2),B1(0,1,2).
D是线段A1C的中点,得D(1,0,1),
所以
设平面A1BC的一个法向量为
 即
x=1,则z=﹣1,所以

所以
设直线B1D与平面A1BC所成的角为α,则
所以直线B1D与平面A1BC所成角的正弦值为
[点评]
本题考查了"平面与平面垂直,直线与平面所成的角,",属于"必考题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
168963. (2021•交大附中•四模) 如图所示的几何体中,正方形ABCD所在平面垂直于平面APBQ,四边形APBQ为平行四边形,GPC上一点,且BG⊥平面APCAB=2.
(1)求证:平面PAD⊥平面PBC
(2)当三棱锥PABC体积最大时,求平面APC与平面BCQ所成二面角的正弦值.

共享时间:2021-04-20 难度:2 相似度:2
166797. (2024•西安工业大学附中•高二上一月) 如图,在四棱锥PABCD中,PA⊥平面ABCDABCDCD=4,PAABBCAD=2,Q为棱PC上的一点,且PQPC
(Ⅰ)证明:平面QBD⊥平面ABCD
(Ⅱ)求直线QD与平面PBC所成角的正弦值.

共享时间:2024-10-20 难度:2 相似度:2
168102. (2023•西工大附中•十三模) 如图,已知三棱柱ABCA1B1C1,∠ACB=90°,AC1A1CD为线段A1C上的动点,AC1BD
(1)求证:平面ACC1A1⊥平面ABC
(2)若AA1ACD为线段A1C的中点,AC=2BC=2,求B1D与平面A1BC所成角的余弦值.

共享时间:2023-07-20 难度:2 相似度:2
168194. (2023•西工大附中•八模) 如图1,四边形ABCD为矩形,BC=2ABEAD的中点,将△ABE、△DCE分别沿BECE折起得图2,使得平面ABE⊥平面BCE,平面DCE⊥平面BCE
(Ⅰ)求证:平面ABE⊥平面DCE
(Ⅱ)若F为线段BC的中点,求直线FA与平面ADE所成角的正弦值.

共享时间:2023-06-11 难度:2 相似度:2
170391. (2022•长安区一中•高二下期末) 如图1,在矩形ABCD中,BC=2AB=2,EAD中点,将△CDE沿直线CE翻折到△CPE的位置,使得PB,如图2.

(1)求证:面PCE⊥面ABCE
(2)求PC与面ABP所成角的正弦值.
共享时间:2022-07-21 难度:2 相似度:2
168056. (2023•长安区一中•二模) 如图,在三棱柱ABCA1B1C1中,四边形AA1C1C是边长为4的菱形.,点D为棱AC上动点(不与AC重合),平面B1BD与棱A1C1交于点E
(1)求证:BB1DE
(2)若,平面ABC⊥平面AA1C1C,∠A1AC=60°,求直线BC与平面B1BDE所成角的正弦值.

共享时间:2023-03-28 难度:2 相似度:2
169550. (2024•铁一中学•高二上期末) 如图,在四棱锥PABCD中,底面ABCD为直角梯形,ADBC.∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PAPD=2,BCAD=1,CD
(1)求证:平面MQB⊥平面PAD
(2)若二面角MBQC的大小为30°,求直线QM与平面PAD所成角的正弦值.

共享时间:2024-02-22 难度:2 相似度:2
169214. (2025•师大附中•高二上期末) 已知四棱柱ABCDA1B1C1D1的所有棱长相等,且∠A1AB=∠A1AD=∠BAD=60°.
①证明:平面A1AC⊥平面A1BD
②求直线BC1与平面A1AC所成角的正弦值?

共享时间:2025-02-11 难度:2 相似度:2
166466. (2024•铁一中学•高三上三月) 如图,在三棱柱ABCA1B1C1中,AA1BB1的距离为ABACA1B=2,A1CBC=2
(1)证明:平面A1ABB1⊥平面ABC
(2)若点N在棱A1C1上,求直线AN与平面A1B1C所成角的正弦值的最大值.

共享时间:2024-01-29 难度:2 相似度:2
171847. (2022•西安中学•高二上期中) 在Rt△ABC中,∠C=90°,BC=3,AC=6,DE分别是ACAB上的点,满足DEBCDE经过△ABC的重心,将△ADE沿DE折起到△A1DE的位置,使A1CCDMA1D的中点,如图所示.
(1)求证:A1C⊥平面BCDE
(2)求CM与平面A1BE所成角的大小;
(3)在线段A1B上是否存在点NN不与端点A1B重合),使平面CMN与平面DEN垂直?若存在,求出A1NBN的比值;若不存在,请说明理由.

共享时间:2022-11-28 难度:3 相似度:1.67
170011. (2023•西工大附中•高三上期末) 如图,在四棱锥PABMN中,△PNM是边长为2的正三角形,ANNPANBMAN=3,BM=1,CD分别是线段ABNP的中点.
(1)求证:CD∥平面PBM
(2)求证:平面ANMB⊥平面NMP
(3)求直线CD与平面ABP所成角的正弦值.

共享时间:2023-02-15 难度:3 相似度:1.67
168297. (2022•西工大附中•一模) 如图所示的几何体是由等高的半个圆柱和个圆柱拼接而成,点G为弧的中点,且CEDG四点共面.
(1)证明:平面BFD⊥平面BCG
(2)若平面BDF与平面ABG所成锐二面角的余弦值为,求直线DF与平面ABF所成角的大小.

共享时间:2022-03-12 难度:3 相似度:1.67
167279. (2023•长安区一中•高三上五月) 如图,△ABCABBC=2,∠ABC=90°,EF分别为ABAC边的中点,以EF为折痕把AEF折起,使点A到达点P的位置,且PBBE
(Ⅰ)证明:EF⊥平面PBE
(Ⅱ)设N为线段PF上动点,求直线BN与平面PCF所成角的正弦值的最大值.

共享时间:2023-12-29 难度:1 相似度:1.5
166857. (2024•西安八十五中•高二上一月) 如图,在直三棱柱ABCA1B1C1中,M为棱AC的中点,ABBCAC=2,AA1
(1)求证:B1C∥平面A1BM
(2)求证:AC1⊥平面A1BM
(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时的值;如果不存在,请说明理由.

共享时间:2024-10-13 难度:1 相似度:1.5
170301. (2022•西安中学•高二上期末) 如图甲,在直角三角形ABC中,已知ABBCBC=4,AB=8,DE分别是ABAC的中点.将△ADE沿DE折起,使点A到达点A′的位置,且ADBD,连接ABAC,得到如图乙所示的四棱锥A′﹣DBCEM为线段AD上一点.

(Ⅰ)证明:平面ADB⊥平面DBCE
(Ⅱ)过BCM三点的平面与线段A'E相交于点N,从下列三个条件中选择一个作为已知条件,求直线DN与平面ABC所成角的正弦值.
BMBE
②直线EMBC所成角的大小为45°;
③三棱锥MBDE的体积是三棱锥EA'BC体积的

共享时间:2022-02-23 难度:4 相似度:1.5

dygzsxyn

2023-07-27

高中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!