首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

169214. (2025•师大附中•高二上期末) 已知四棱柱ABCDA1B1C1D1的所有棱长相等,且∠A1AB=∠A1AD=∠BAD=60°.
①证明:平面A1AC⊥平面A1BD
②求直线BC1与平面A1AC所成角的正弦值?

共享时间:2025-02-11 难度:2
[考点]
平面与平面垂直,直线与平面所成的角,
[答案]
见试题解答内容
[解析]
解:①证明:连接BDAC于点OA1DA1CA1B
∵四棱柱ABCDA1B1C1D1的所有棱长相等,∠A1AB=∠A1AD=∠BAD=60°,
∴四棱柱的每个面均为全等的菱形,
ACBDA1DA1B
A1OBD
ACA1OA,且均在平面A1AC内,
BD⊥平面A1AC
BD在平面A1BD内,
∴平面A1AC⊥平面A1BD

②由(1)知,OAOBOA1两两互相垂直,以点O为坐标原点,以OAOBOA1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,

设四棱柱的棱长为2,则B(0,1,0),

显然
,即

而平面A1AC的一个法向量为
设直线BC1与平面A1AC所成角为θ,则


[点评]
本题考查了"平面与平面垂直,直线与平面所成的角,",属于"必考题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
168079. (2023•西工大附中•十三模) 如图,已知三棱柱ABCA1B1C1,∠ACB=90°,AC1A1CD为线段A1C上的动点,AC1BD
(1)求证:平面ACC1A1⊥平面ABC
(2)若AA1ACD为线段A1C的中点,AC=2BC=2,求B1D与平面A1BC所成角的正弦值.

共享时间:2023-07-27 难度:2 相似度:2
168194. (2023•西工大附中•八模) 如图1,四边形ABCD为矩形,BC=2ABEAD的中点,将△ABE、△DCE分别沿BECE折起得图2,使得平面ABE⊥平面BCE,平面DCE⊥平面BCE
(Ⅰ)求证:平面ABE⊥平面DCE
(Ⅱ)若F为线段BC的中点,求直线FA与平面ADE所成角的正弦值.

共享时间:2023-06-11 难度:2 相似度:2
168102. (2023•西工大附中•十三模) 如图,已知三棱柱ABCA1B1C1,∠ACB=90°,AC1A1CD为线段A1C上的动点,AC1BD
(1)求证:平面ACC1A1⊥平面ABC
(2)若AA1ACD为线段A1C的中点,AC=2BC=2,求B1D与平面A1BC所成角的余弦值.

共享时间:2023-07-20 难度:2 相似度:2
168963. (2021•交大附中•四模) 如图所示的几何体中,正方形ABCD所在平面垂直于平面APBQ,四边形APBQ为平行四边形,GPC上一点,且BG⊥平面APCAB=2.
(1)求证:平面PAD⊥平面PBC
(2)当三棱锥PABC体积最大时,求平面APC与平面BCQ所成二面角的正弦值.

共享时间:2021-04-20 难度:2 相似度:2
166797. (2024•西安工业大学附中•高二上一月) 如图,在四棱锥PABCD中,PA⊥平面ABCDABCDCD=4,PAABBCAD=2,Q为棱PC上的一点,且PQPC
(Ⅰ)证明:平面QBD⊥平面ABCD
(Ⅱ)求直线QD与平面PBC所成角的正弦值.

共享时间:2024-10-20 难度:2 相似度:2
166466. (2024•铁一中学•高三上三月) 如图,在三棱柱ABCA1B1C1中,AA1BB1的距离为ABACA1B=2,A1CBC=2
(1)证明:平面A1ABB1⊥平面ABC
(2)若点N在棱A1C1上,求直线AN与平面A1B1C所成角的正弦值的最大值.

共享时间:2024-01-29 难度:2 相似度:2
168056. (2023•长安区一中•二模) 如图,在三棱柱ABCA1B1C1中,四边形AA1C1C是边长为4的菱形.,点D为棱AC上动点(不与AC重合),平面B1BD与棱A1C1交于点E
(1)求证:BB1DE
(2)若,平面ABC⊥平面AA1C1C,∠A1AC=60°,求直线BC与平面B1BDE所成角的正弦值.

共享时间:2023-03-28 难度:2 相似度:2
168297. (2022•西工大附中•一模) 如图所示的几何体是由等高的半个圆柱和个圆柱拼接而成,点G为弧的中点,且CEDG四点共面.
(1)证明:平面BFD⊥平面BCG
(2)若平面BDF与平面ABG所成锐二面角的余弦值为,求直线DF与平面ABF所成角的大小.

共享时间:2022-03-12 难度:3 相似度:1.67
168149. (2023•西工大附中•六模) 如图,四棱锥PABCD底面为菱形,ABAP=2,PA⊥底面ABCDEF分别是线段PBPD的中点,G是线段PC上的一点.
(1)若,证明直线AG在平面AEF内;
(2)若直线AG与平面AEF所成角的正弦值为,试确定的值.

共享时间:2023-05-19 难度:1 相似度:1.5
167279. (2023•长安区一中•高三上五月) 如图,△ABCABBC=2,∠ABC=90°,EF分别为ABAC边的中点,以EF为折痕把AEF折起,使点A到达点P的位置,且PBBE
(Ⅰ)证明:EF⊥平面PBE
(Ⅱ)设N为线段PF上动点,求直线BN与平面PCF所成角的正弦值的最大值.

共享时间:2023-12-29 难度:1 相似度:1.5
166857. (2024•西安八十五中•高二上一月) 如图,在直三棱柱ABCA1B1C1中,M为棱AC的中点,ABBCAC=2,AA1
(1)求证:B1C∥平面A1BM
(2)求证:AC1⊥平面A1BM
(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时的值;如果不存在,请说明理由.

共享时间:2024-10-13 难度:1 相似度:1.5
168388. (2023•交大附中•十三模) 如图所示,四棱锥PABCD的底面ABCD是矩形,PB⊥底面ABCDABBC=3,BP=3,CFCPDEDA
(1)证明:EF∥平面ABP
(2)求直线PC与平面ADF所成角的正弦值.

共享时间:2023-07-21 难度:2 相似度:1
168456. (2021•西安中学•七模) 如图,在四棱锥PABCD中,PA⊥底面ABCDADABABDCADDCAP=2,AB=1,点E为棱PC的中点.
(Ⅰ)证明:BEDC
(Ⅱ)求直线BE与平面PBD所成角的正弦值.

共享时间:2021-06-02 难度:2 相似度:1
168481. (2021•西安中学•三模) 如图所示,ABCD是边长为2的正方形,AE⊥平面BCE,且AE=1.
(Ⅰ)求证:平面ABCD⊥平面ABE
(Ⅱ)线段AD上是否存在一点F,使三棱锥CBEF的高h?若存在,请求出的值;若不存在,请说明理由.

共享时间:2021-04-14 难度:2 相似度:1
168503. (2021•西安中学•三模) 在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠CAD=90°,EFBCEFBCAC=2,AEEC
(1)求证:ADEF四点共面,且平面ADEF⊥平面CDE
(2)若二面角EACF的大小为45°,求点D到平面ACF的距离.

共享时间:2021-04-03 难度:2 相似度:1

db@dyw.com

2025-02-11

高中数学 | 高二上 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 10
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!