首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

22371. (2020•铁一中学•八上一月) (1)如图1,已知∠ABC=∠ADC=90°,ABBCBD=2,则四边形ABCD的面积为    
(2)如图2,已知△ABC和△DCE均为直角三角形,∠ACB=∠DCE=90°,ACBC=4,CDCEAE=2,∠EAC=45°,求AD的长.
(3)如图3,在凸四边形ABCD中,∠DAB=∠DBC=∠DCB=45°,AB=4,请问△ABC的面积是否为定值?若为定值,请求出这个值,若不是,请说明理由.
共享时间:2020-10-13 难度:5
[考点]
全等图形的性质,四边形综合题,旋转的性质,费马点问题,
[答案]
(1)2;
(2)6;
(3)△ABC的面积为定值,定值为16.
[解析]
解:(1)如图2,将△BCD绕点B逆时针旋转90°得到△BAF

∴△BCD≌△BAF,∠FBD=90°,
BFBD,∠BAF=∠BCDCDAFSABFSBCD
∵∠ABC=∠ADC=90°,
∴∠BAD+∠BCD=180°,
∴∠BAD+∠BAF=180°,
∴点F,点A,点D三点共线,
BFBD=2,∠DBF=90°,
SBDF×BF×BD=2,
SBDFSABF+SABDSBCD+SABDS四边形ABCD=2;
故答案为:2.
(2)如图2,连接BE

∵∠ACB=∠DCE=90°,
∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD
又∵ACBCDCEC
在△ACD和△BCE中,

∴△ACD≌△BCESAS),
ADBE
ACBC=4,
AB=4
∵∠BAC=∠CAE=45°,
∴∠BAE=90°,
在Rt△BAE中,AB=4AE=2,
BE=6,
AD=6;
(3)△ABC的面积为定值.
如图3,过DDEAD,交AB延长线于E,连接CE

则△ADE是等腰直角三角形,
ADDE
∵∠ADE=∠BDC=90°,
∴∠ADB=∠CDE
在△ABD与△ECD中,

∴△ABD≌△ECDSAS),
CEAB=4 ,∠DEC=∠DAB=45°,
∴∠AEC=90°,
CEAB
SABCABCE=16,
∴△ABC的面积是定值.
[点评]
本题是四边形综合题,考查了全等三角形的性质,旋转的性质,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
61390. (2023•爱知中学•七上期末) 如图,已知△ABC中,∠B=90°,将△ABC沿着射线BC方向平移得到△DEF,其中点A、点B、点C的对应点分别是点D、点E、点F,且CE=DE.
德优题库
(1)如图①,如果AB=6,BC=3,那么平移的距离等于        ;(请直接写出答案)
(2)如图②,将△DEF绕着点E逆时针旋转90°得到△CEG,连接AG,如果AB=a,BC=b,求△ACG的面积;
(3)如图③,在(2)题的条件下,分别以AB,BC为边向外作正方形,正方形的面积分别记为S1,S2,且满足S1-S2=16,如果平移的距离等于8,求出△ACG的面积.
共享时间:2023-02-19 难度:1 相似度:1.25
61343. (2023•爱知中学•九上期末) (1)如图1,AD∥BC,连接AB、AC、BD、CD,则S△ABC       S△BCD
(2)如图2,在△ABC中,∠BAC=45°,BC=6,求△ABC的最大面积.
(3)如图3,西安市规划局计划打造一片公共休闲区域(即四边形ABCD),准备在△ABC中种植绿植,同时以AC为边在它的左侧打造一个等边三角形的花卉园(即△ACD),要求∠A=60°,BC=600m,且使四边形ABCD的面积最大,请问是否存在满足要求的四边形ABCD,如果存在,求出四边形ABCD面积的最大值,如果不存在,请说明理由.
德优题库
共享时间:2023-03-02 难度:1 相似度:1.25
27864. (2023•爱知中学•九上期末) 【问题探究】
(1)如图1,在矩形ABCD中,AB=4,点E、F分别为边AD、BC上的点,且AE=1,BF=2,P为边AB上一动点,连接EP、PF,则EP+PF的最小值为        
(2)如图2,在矩形ABCD中,AB=4,BC=8,点E、F分别在边AD和BC上,连接AC,EF⊥AC于M,求EF的长.
【问题解决】
(3)某市进行绿化改造,美化生态环境.如图3,将一块四边形的空地ABCD改造成了供市民休闲锻炼的公园.已知:在四边形ABCD中,AB∥CD,∠C=90°,tan∠CDA=2,BC=60米,AB=110米,在公园的AD边上有一个出口M,经测量MD=2MA,为了方便市民,现计划在公园的AB边和CD边上分别建一个休息亭F和E,然后铺设观景道BE、EF、FM,并且EF⊥BM,若要使这三条观景道的距离和最小(即BE+EF+FM最小),请求出休息亭F距离点A多远?并求出BE+EF+FM的最小值.(小路面积忽略不计,结果保留根号)
德优题库
共享时间:2024-01-30 难度:1 相似度:1.25
811. (2015•陕西省•真题) 如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为      
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
共享时间:2015-08-18 难度:5 相似度:1.25
882. (2013•陕西省•真题) 问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

 
共享时间:2013-11-18 难度:3 相似度:1.25
1052. (2019•陕西省•真题) 问题提出:
1)如图1,已知△ABC,试确定一点D,使得以ABCD为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
2)如图2,在矩形ABCD中,AB4BC10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC90°,求满足条件的点P到点A的距离;
问题解决:
3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
共享时间:2019-07-05 难度:5 相似度:1.25
6220. (2017•西工大附中•一模) 问题提出
(1)如图1,点A为线段BC外一动点,且BCaABb,填空:当点A位于         时,线段AC的长取得最大值,且最大值为      (用含ab的式子表示).
问题探究
(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以ABAC为边,作等边三角形ABD和等边三角形ACE,连接CDBE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.
问题解决:
(3)①如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PMPB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.
②如图4,在四边形ABCD中,ABAD,∠BAD=60°,BC=4,若对角线BDCD于点D,请直接写出对角线AC的最大值.
共享时间:2017-02-28 难度:5 相似度:1.13
19063. (2016•交大附中•模拟) 小明的数学探究小组进行了系列探究活动.
类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.
探索理解:
(1)如图1,已知ABC在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DADC,使四边形ABCD为邻等四边形;

尝试体验:
(2)如图2,邻等四边形ABCD中,ADCD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.
解决应用:
(3)如图3,邻等四边形ABCD中,ADCD,∠ABC=75°,∠ADC=60°,BD=4.
小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.
共享时间:2016-06-21 难度:5 相似度:1.13
6169. (2017•师大附中•模拟) (1)如图1,线段AB的长为4,请你作出一个以AB为斜边且面积最大的直角三角形ABC.
(2)如图2,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=4,BC=2,请你求出四边形ABCD的面积.
问题解决:
(3)小明爸爸所在的工厂需要裁取某种四边形的材料板,这种材料板的形状如图3所示,并且满足在四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,DB=4,你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.
德优题库
共享时间:2017-06-21 难度:5 相似度:0.79
23819. (2021•益新中学•五模) 问题发现:
(1)正方形ABCD和正方形AEFG如图①放置,AB=4,AE=2.5,则  
问题探究:
(2)如图②,在矩形ABCD中,AB=3,BC=4,点P在矩形的内部,∠BPC=135°,求AP长的最小值.
问题拓展:
(3)如图③,在四边形ABCD中,连接对角线ACBD,已知AB=6,ACCD,∠ACD=90°,∠ACB=45°,则对角线BD是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
共享时间:2021-06-18 难度:5 相似度:0.79
24120. (2018•汇知中学•八下期中) 如图,△ABC绕顶点B顺时针旋转140°得△EBD,且连接CD,若∠ACB=90°,∠ABC=40°,求∠BDC的度数.
德优题库
共享时间:2018-05-26 难度:3 相似度:0.75
25275. (2023•高新一中•八下期中) 如图,Rt△ABC中,∠ABC=90°,ABBC=4,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是        
德优题库
共享时间:2022-05-29 难度:2 相似度:0.75
24122. (2018•汇知中学•八下期中) 如图,在直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).
(1)画出△ABC关于原点O的中心对称图形;
(2)画出将△ABC绕点A顺时针方向旋转90°后的图形.
德优题库
共享时间:2018-05-26 难度:4 相似度:0.75
6495. (2017•西安市•模拟) 问题探究
(1)如图①,已知正方形ABCD的边长为4.点MN分别是边BCCD上两点,且BMCN,连接AMBN,交于点P.猜想AMBN的位置关系,并证明你的结论.
(2)如图②,已知正方形ABCD的边长为4.点MN分别从点BC同时出发,以相同的速度沿BCCD方向向终点CD运动.连接AMBN,交于点P,求△APB周长的最大值;
问题解决
(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点MN分别从点BC同时出发,以相同的速度沿BCCA向终点CA运动.连接AMBN,交于点P.求△APB周长的最大值.
共享时间:2017-06-23 难度:5 相似度:0.72
24196. (2017•爱知中学•八下期中) △ABC在方格中的位置如图所示.
(1)请在方格纸上建立平面直角坐标系,使得A、B两点的坐标分别为A(2,-1)、B(1,-4).并求出C点的坐标;
(2)作出△ABC关于横轴对称的△A1B1C1,再作出△ABC以坐标原点为旋转中心、旋转180°后的△A2B2C2,并写出C1、C2两点的坐标.
德优题库
共享时间:2017-05-06 难度:4 相似度:0.58

dysx2021

2020-10-13

初中数学 | 八年级上 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 1
  • 590
  • 0.5
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!