服务热线
A.MN⊥AD
B.平面AND⊥平面ABC
C.三棱锥A﹣BCD的体积为
D.三棱锥A﹣BCD的外接球的表面积为11π
A.l∥BC
C.AB⊥PC
B.平面PDE⊥平面PAD
D.l被球O截得的弦长为1
A.点M(3,2,1)关于平面yOz对称的点的坐标是(﹣3,2,﹣1)
B.若直线l的方向向量为=(1,﹣1,2),平面α的法向量为
,则l⊥α
C.若直线l的方向向量与平面α的法向量的夹角为120°,则直线l与平面α所成的角为30°
D.已知O为空间任意一点,A,B,C,P四点共面,且任意三点不共线,若,则
A.直线AC与DB所成的角为120°
B.直线AD与平面ABC所成角的正弦值为
C.平面ABC与平面ABD夹角的余弦值为
D.若E,F分别是AB,CD上的动点,则EF的最小值为
A.三棱锥A﹣D1PD的体积不变
B.A1P∥平面ACD1
C..平面PDB1⊥平面ACD1
D..AP⊥D1C
A..两条不重合直线l1,l2的方向向量分别是,则l1∥l2
B.直线l的方向向量,平面α的法向量
,则l⊥α
C.两个不同的平面α,β的法向量分别是,则α⊥β
D.直线l的方向向量,平面α的法向量
,则直线l与平面α所成角的大小为
A.平面ABC1D1⊥平面α
B.点D1到平面α的距离为8
C.当d∈(2,8)时,水面的形状是四边形
D..当d=7时,所装的水的体积为
A.平面ABC1D1⊥平面α
B.点D1到平面α的距离为8
C.当d∈(2,8)时,水面的形状是四边形
D..当d=7时,所装的水的体积为
A.直线DB1⊥平面ACD1
B..直线AE与平面BB1D1D所成角的正弦值为定值
C..平面A1C1B∥平面ACD1
D..点F到平面ACD1的距离为定值
dygzsxyn
2024-11-25
高中数学 | 高二上 | 选择题