首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

170730. (2020•西安中学•高一上期末) 如图,在直角梯形ABCD中,ADBC,∠BADABBCADaEAD的中点,OACBE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1BCDE
(Ⅰ)证明:CD⊥平面A1OC
(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1BCDE的体积为36,求a的值.

共享时间:2020-02-05 难度:2
[考点]
直线与平面垂直,平面与平面垂直,
[答案]
见试题解答内容
[解析]
解:
I)在图1中,
因为ABBCaEAD的中点,
BAD
所以BEAC
即在图2中,BEA1OBEOC
从而BE⊥面A1OC
CDBE
所以CD⊥面A1OC
II)即A1O是四棱锥A1BCDE的高,
根据图1得出A1OABa
∴平行四边形BCDE的面积SBCABa2
Vaa3
Va3=36,得出a=6.
[点评]
本题考查了"直线与平面垂直,平面与平面垂直,",属于"易错题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
170814. (2020•西安中学•高二上期末) 如图,在正方体ABCDA1B1C1D1中,E为棱DD1的中点.求证:
(1)BD1⊥平面AB1C
(2)平面EAC⊥平面AB1C

共享时间:2020-02-15 难度:2 相似度:2
167326. (2023•长安区一中•高三上二月) 如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PABD
(2)求证:平面BDE⊥平面PAC
(3)当PA∥平面BDE时,求三棱锥EBCD的体积.

共享时间:2023-12-21 难度:3 相似度:1.67
171847. (2022•西安中学•高二上期中) 在Rt△ABC中,∠C=90°,BC=3,AC=6,DE分别是ACAB上的点,满足DEBCDE经过△ABC的重心,将△ADE沿DE折起到△A1DE的位置,使A1CCDMA1D的中点,如图所示.
(1)求证:A1C⊥平面BCDE
(2)求CM与平面A1BE所成角的大小;
(3)在线段A1B上是否存在点NN不与端点A1B重合),使平面CMN与平面DEN垂直?若存在,求出A1NBN的比值;若不存在,请说明理由.

共享时间:2022-11-28 难度:3 相似度:1.67
170168. (2023•铁一中学•高二上期末) 如图,在四棱锥PABCD中,底面ABCD是矩形,AB=2,BCaPA⊥底面ABCD
(1)当a为何值时,BD⊥平面PAC?证明你的结论;
(2)若在BC边上至少存在一点M,使PMDM,求a的取值范围.

共享时间:2023-02-15 难度:1 相似度:1.5
166857. (2024•西安八十五中•高二上一月) 如图,在直三棱柱ABCA1B1C1中,M为棱AC的中点,ABBCAC=2,AA1
(1)求证:B1C∥平面A1BM
(2)求证:AC1⊥平面A1BM
(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时的值;如果不存在,请说明理由.

共享时间:2024-10-13 难度:1 相似度:1.5
169945. (2023•长安区一中•高二上期末) 如图,在四棱锥SABCD中,ABDCBCABCDSD,平面SCD⊥平面SBC
(1)求证:BC⊥平面SCD
(2)设BCCD=8,SB=16,求三棱锥SBCD的体积.

共享时间:2023-02-10 难度:2 相似度:1
169918. (2023•长安区一中•高二下期末) 图1是直角梯形ABCDABCD,∠D=90°,AB=4,DC=6,,以BE为折痕将△BCE折起,使点C到达C1的位置,且,如图2.
(1)证明:平面BC1E⊥平面ADEB
(2)若,求二面角PBEA的大小.

共享时间:2023-07-19 难度:2 相似度:1
169876. (2023•长安区一中•高一下期末) 如图所示,在三棱锥PABC中,EP在底面ABC内的投影,且E为△ABC的垂心.
(1)若FCPAB内的投影,证明:PFAB
(2)当三棱锥PABC为正三棱锥且AB=6,PC与平面ABC所成角为时,求点C到平面PAB的距离.

共享时间:2023-07-01 难度:2 相似度:1
169761. (2023•师大附中•高二下期末) 如图,在四棱锥PABCD中,底面ABCD为菱形,ACPEPAPDE为棱AB的中点.
(1)证明:平面PAD⊥平面ABCD
(2)若PAAD,∠BAD=60°,求二面角EPDA的正弦值.

共享时间:2023-07-24 难度:2 相似度:1
169739. (2023•师大附中•高二下期末) 如图,在三棱锥PABC中,ABBC=2PAPBPCAC=4,OAC的中点.
(1)证明:PO⊥平面ABC
(2)若点MBC上且 =2,求点M到平面PAB的距离.

共享时间:2023-07-03 难度:2 相似度:1
169699. (2024•西安八十五中•高一下期末) 如图1,平面四边形ABCD中,ABACABACACCDEBC的中点,将△ACD沿对角线AC折起,使CDBC,连接BD,得到如图2所示的三棱锥DABC
(1)证明:平面ADE⊥平面BCD
(2)已知直线DE与平面ABC所成的角为,求二面角ABDC的余弦值.

共享时间:2024-07-08 难度:2 相似度:1
169569. (2024•师大附中•高二下期末) 如图,在四棱台ABCDA1B1C1D1中,底面ABCD为平行四边形,∠BAD=120°,侧棱AA1⊥底面ABCDM为棱CD上的点.ADA1A=2,A1B1DM=1.
(1)求证:AMA1B
(2)若MCD的中点,N为棱DD1上的点,且,求平面A1MN与平面A1BD所成角的余弦值.

共享时间:2024-07-27 难度:2 相似度:1
169550. (2024•铁一中学•高二上期末) 如图,在四棱锥PABCD中,底面ABCD为直角梯形,ADBC.∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PAPD=2,BCAD=1,CD
(1)求证:平面MQB⊥平面PAD
(2)若二面角MBQC的大小为30°,求直线QM与平面PAD所成角的正弦值.

共享时间:2024-02-22 难度:2 相似度:1
169525. (2024•铁一中学•高三上期末) 如图,已知三棱柱ABCA1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1AA1CACEF分别是ACA1B1的中点.
(Ⅰ)证明:EFBC
(Ⅱ)求直线EF与平面A1BC所成角的余弦值.

共享时间:2024-02-27 难度:2 相似度:1
261. (2014•陕西省•真题) 四面体ABCD及其三视图如图所示,平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH
)求四面体ABCD的体积;
)证明:四边形EFGH是矩形.
                                                                                                               
 
共享时间:2014-07-07 难度:3 相似度:1

dygzsxyn

2020-02-05

高中数学 | 高一上 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!