首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

169877. (2023•长安区一中•高一下期末) 如图1,在Rt△中,ABBCAC=12,∠BACEF都在AC上,且AEEFFC=3:4:5,BEFG,将△AEB,△CFG分别沿EBFG折起,使得点AC在点P处重合,得到四棱锥PEFGB,如图2.
(1)求异面直线PFBG所成角的余弦值;
(2)若MPB的中点,求钝二面角BFME的余弦值.

共享时间:2023-07-01 难度:2
[考点]
异面直线及其所成的角,二面角的平面角及求法,
[答案]
(1)异面直线PFBG所成角的余弦值为
(2)钝二面角BFME的余弦值为﹣
[解析]
解:(1)由题意可知AE=3,EF=4,CF=5,故PEEF,且AB=6,
,∴△ABE∽△ACB,∴BEACFGAC
BEEFBEPE
E为坐标原点,EFEBEP所在直线为xyz轴建立空间直角坐标系Exyz如图所示,
易知BE=3FG
 
F(4,0,0),B(0.3,0),P(0,0,3),
=(4,0,﹣3),=(4,﹣,0),
∴cos<>=
故异面直线PFBG所成角的余弦值为
 (2)由(1)可知=(4,﹣,﹣),=(4,﹣3,0),=(4,0,0),
设平面BFM法向量为=(xyz),
,令y=4,得x=3z=4
∴平面BFM法向量为=(3,4,4),
设平面EFM法向量为=(abc),
,令b=1,得a=0,c=﹣
∴平面EFM法向量为=(0,1,﹣),
∴cos<>==﹣
∴钝二面角BFME的余弦值为﹣
[点评]
本题考查了"异面直线及其所成的角,二面角的平面角及求法,",属于"易错题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
171162. (2024•西安八十五中•高二上期中) 如图,在五面体ABCDEF中,FA⊥平面ABCDADBCFEABADMEC的中点,AFABBCFEAD
(1)求异面直线BFDE所成的角的大小;
(2)证明平面AMD⊥平面CDE
(3)求二面角ACDE的余弦值.

共享时间:2024-11-25 难度:3 相似度:1.67
169970. (2023•长安区一中•高二上期末) 如图,AB是圆O的直径,点C是圆O上异于AB的点,直线PC⊥平面ABCEF分别是PAPC的中点.
(1)记平面BEF与平面ABC的交线为l,试判断直线l平面PAC的位置关系,并加以证明;
(2)设PC=2AB=4,求二面角ElC大小的取值范围.

共享时间:2023-02-13 难度:1 相似度:1.5
171984. (2023•唐南中学•高一下期中) 如图,在正方体ABCDA1B1C1D1中,EF分别是ABAA1的中点.
(1)证明:EFD1C是梯形;
(2)求异面直线EFBC1所成角.

共享时间:2023-05-27 难度:1 相似度:1.5
167564. (2023•关山中学•高二上一月) 如图,在直三棱柱ABCA1B1C1中,AA1AC=4,AB=3,BC=5,点D是线段BC的中点.请用空间向量的知识解答下列问题:
(1)求证:ABA1C
(2)试求二面角DCA1A的余弦值.

共享时间:2023-10-16 难度:1 相似度:1.5
169761. (2023•师大附中•高二下期末) 如图,在四棱锥PABCD中,底面ABCD为菱形,ACPEPAPDE为棱AB的中点.
(1)证明:平面PAD⊥平面ABCD
(2)若PAAD,∠BAD=60°,求二面角EPDA的正弦值.

共享时间:2023-07-24 难度:2 相似度:1
169699. (2024•西安八十五中•高一下期末) 如图1,平面四边形ABCD中,ABACABACACCDEBC的中点,将△ACD沿对角线AC折起,使CDBC,连接BD,得到如图2所示的三棱锥DABC
(1)证明:平面ADE⊥平面BCD
(2)已知直线DE与平面ABC所成的角为,求二面角ABDC的余弦值.

共享时间:2024-07-08 难度:2 相似度:1
169632. (2024•西安三中•高二上期末) 如图,BC是⊙O的直径,BC=2,点A上的一个动点,过点APA垂直⊙O所在的平面,且PA=1.
(1)当三棱锥OPAC体积最大时,求直线PO与平面PAC所成角的大小;
(2)当点A上靠近点C的三等分点时,求二面角APOB的正弦值.

共享时间:2024-02-04 难度:2 相似度:1
169612. (2024•滨河中学•高一下期末) 如图,在四棱锥PABCD中,平面PAB⊥平面ABCD,|AB|=2,|BC|=|CD|=1,ABCD,∠ABC=90°,∠APB=90°,|PA|=|PB|.
(1)求点D到平面PAC的距离;
(2)求二面角ABDP的正切值.

共享时间:2024-07-23 难度:2 相似度:1
169569. (2024•师大附中•高二下期末) 如图,在四棱台ABCDA1B1C1D1中,底面ABCD为平行四边形,∠BAD=120°,侧棱AA1⊥底面ABCDM为棱CD上的点.ADA1A=2,A1B1DM=1.
(1)求证:AMA1B
(2)若MCD的中点,N为棱DD1上的点,且,求平面A1MN与平面A1BD所成角的余弦值.

共享时间:2024-07-27 难度:2 相似度:1
19772. (2021•陕西省•乙卷) 如图,四棱锥PABCD的底面是矩形,PD⊥底面ABCDPDDC=1,MBC中点,且PBAM
(1)求BC
(2)求二面角APMB的正弦值.
共享时间:2021-06-21 难度:4 相似度:1
169418. (2024•西安中学•高三上期末) 如图所示,在四棱锥PABCD中,四边形ABCD为梯形,CDABABBCPAPDBCCDPAPD=1,AB=2,平面PAD⊥平面PBC
(1)若PB的中点为N,求证:CN∥平面PAD
(2)求二面角PADB的正弦值.

共享时间:2024-02-27 难度:2 相似度:1
169372. (2024•师大附中•高二上期末) 如图,△ABC和△DBC所在平面垂直,且ABBCBD=2,∠CBA=∠DBC=120°.
(1)求证:ADBC
(2)求二面角ABDC的正弦值.

共享时间:2024-02-14 难度:2 相似度:1
169193. (2020•交大附中•三模) 如图,在多面体ABCDEF中,四边形ABCD是边长为的菱形,∠BCD=60°,ACBD交于点O,平面FBC⊥平面ABCDEFABFBFCEF
(1)求证:OE⊥平面ABCD
(2)若△FBC为等边三角形,点QAE的中点,求二面角QBCA的余弦值.

共享时间:2020-04-15 难度:2 相似度:1
169123. (2020•西工大附中•三模) 已知一等腰梯形ABCD,如图(1)所示,ABCDAB=2AD=2CD=2,沿AC将△ACD折起,使得平面ABC⊥平面ACD,如图(2)所示,连接BD,得三棱锥DABC
(1)求证:图(2)中BC⊥平面ACD
(2)求图(2)中的二面角ABDC的正弦值.

共享时间:2020-04-03 难度:2 相似度:1
169100. (2020•西工大附中•三模) 如图,在四棱锥BACDE中,平面ABC⊥平面ACDE,△ABC是一个边长为4的正三角形,在直角梯形ACDE中,AECDAEACAE=2,CD=3,点P在棱BD上,且BP=2PD
(1)求证:EP∥平面ABC
(2)设点M在线段AC上,若平面PEM与平面EAB所成的锐二面角的余弦值为,求MP的长.

共享时间:2020-04-14 难度:2 相似度:1

dygzsxyn

2023-07-01

高中数学 | 高一下 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!