首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

167432. (2023•雁塔二中•高二上一月) 如图,四棱锥PABCD中,底面ABCD为矩形,PA⊥底面ABCDPAAB,点E是棱PB的中点.
(1)求直线AD与平面PBC的距离;
(2)若AD,求二面角AECD的平面角的余弦值.

共享时间:2023-10-26 难度:2
[考点]
二面角的平面角及求法,点、线、面间的距离计算,
[答案]
见试题解答内容
[解析]
解:(1)在矩形ABCD中,ADBC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,
PA⊥底面ABCD,故PAAB,知△PAB为等腰直角三角形,
又点E是棱PB的中点,故AEPB,又在矩形ABCD中,BCAB,而ABPB的底面ABCD内的射影,
由三垂线定理得BCPB,从而BC⊥平面PAB,故BCAE,从而AE⊥平面PBC
AE之长即为直线AD与平面PBC的距离,
在Rt△PAB中,PAAB
所以AEPB
(2)过点DDFCEF,过点FFGCE,交ACG,则∠DFG为所求的二面角的平面角.
由(1)知BC⊥平面PAB,又ADBC,得AD⊥平面PAB
ADAE,从而DE
在Rt△CBE中,CE,由CD
所以△CDE为等边三角形,故FCE的中点,且DFCD•sin
因为AE⊥平面PBC,故AECE,又FGCE,知FGAE.且FGAE
从而FG,且G点为AC的中点,连接DG,则在Rt△ADC中,DG
所以cos∠DFG

[点评]
本题考查了"二面角的平面角及求法,点、线、面间的距离计算,",属于"易错题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
166431. (2024•西光中学•高二上一月) 如图,直三棱柱ABCA1B1C1的体积为4,△A1BC的面积为
(1)求A到平面A1BC的距离;
(2)设DA1C的中点,AA1AB,平面A1BC⊥平面ABB1A1,求二面角ABDC的正弦值.

共享时间:2024-10-12 难度:2 相似度:2
166662. (2024•高新一中•三模) 在底面是菱形的四棱锥SABCD中,已知ABASBS=4,过D作侧面SAB的垂线,垂足O恰为棱BS的中点.
(1)证明在棱AD上存在一点E,使得OE⊥侧面SBC,并求DE的长;
(2)求平面SBC与平面SCD夹角的余弦值.

共享时间:2024-04-04 难度:2 相似度:2
169612. (2024•滨河中学•高一下期末) 如图,在四棱锥PABCD中,平面PAB⊥平面ABCD,|AB|=2,|BC|=|CD|=1,ABCD,∠ABC=90°,∠APB=90°,|PA|=|PB|.
(1)求点D到平面PAC的距离;
(2)求二面角ABDP的正切值.

共享时间:2024-07-23 难度:2 相似度:2
170915. (2024•滨河中学•高二上期中) 如图:等边三角形ABC的边长为3,2.将三角形AMN沿着MN折起,使之成为四棱锥A′﹣MBCN.点P满足,点Q在棱BC上,满足MQBP.且AQNQ

(1)求A′到平面MBCN的距离;
(2)求面ANQ与面A'NC夹角的余弦值;
(3)点Q在面A'MB的正射影为点S,求SA′与平面A'NC夹角的正弦值.
共享时间:2024-11-30 难度:3 相似度:1.67
167919. (2024•西安工业大学附中•六模) 在如图所示的几何体中,四边形ABCD是正方形,四边形ADPQ是梯形,PDQA,平面ADPQ⊥平面ABCD,且ADPD=2QA=2.
(1)求证:QB∥平面PDC
(2)求平面CPB与平面PBQ所成角的大小;
(3)已知点H在棱PD上,且异面直线AHPB所成角的余弦值为,求点A到平面HBC的距离.

共享时间:2024-05-20 难度:3 相似度:1.67
168274. (2021•西安中学•五模) 在四棱锥PABCD中,ABCDCD=2ABACBD相交于点M,点N在线段AP上,AN=λAP(λ>0),且MN∥平面PCD
(1)求实数λ的值;
(2)若,∠BAD=60°,求点N到平面PCD的距离.

共享时间:2021-05-15 难度:1 相似度:1.5
169970. (2023•长安区一中•高二上期末) 如图,AB是圆O的直径,点C是圆O上异于AB的点,直线PC⊥平面ABCEF分别是PAPC的中点.
(1)记平面BEF与平面ABC的交线为l,试判断直线l平面PAC的位置关系,并加以证明;
(2)设PC=2AB=4,求二面角ElC大小的取值范围.

共享时间:2023-02-13 难度:1 相似度:1.5
169719. (2023•师大附中•高一下期末) 如图.在四棱锥PABCD中,平面PAD⊥底面ABCDABCD,∠DAB=60°,PAPD,且PAPDAB=2CD=2.
(1)证明:ADPB
(2)求点A到平面PBC的距离.

共享时间:2023-07-17 难度:1 相似度:1.5
168227. (2021•西安中学•四模) 如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.
(1)证明:MN∥平面C1DE
(2)求点C到平面C1DE的距离.

共享时间:2021-04-28 难度:1 相似度:1.5
167564. (2023•关山中学•高二上一月) 如图,在直三棱柱ABCA1B1C1中,AA1AC=4,AB=3,BC=5,点D是线段BC的中点.请用空间向量的知识解答下列问题:
(1)求证:ABA1C
(2)试求二面角DCA1A的余弦值.

共享时间:2023-10-16 难度:1 相似度:1.5
167563. (2023•关山中学•高二上一月) 已知A(3,3,1),B(1,0,5),求:
(1)线段AB的中点坐标和线段AB长度;
(2)到AB两点距离相等的点Pxyz)的坐标xyz满足的条件.
共享时间:2023-10-16 难度:1 相似度:1.5
167127. (2023•西安中学•高二上一月) 如图,在三棱柱ABCA1B1C1中,AA1⊥平面ABCABACABACAA1=1,M为线段A1C1上一点.
(1)求证:BMAB1
(2)若直线AB1与平面BCM所成角为,求点A1到平面BCM的距离.

共享时间:2023-10-30 难度:1 相似度:1.5
169761. (2023•师大附中•高二下期末) 如图,在四棱锥PABCD中,底面ABCD为菱形,ACPEPAPDE为棱AB的中点.
(1)证明:平面PAD⊥平面ABCD
(2)若PAAD,∠BAD=60°,求二面角EPDA的正弦值.

共享时间:2023-07-24 难度:2 相似度:1
169739. (2023•师大附中•高二下期末) 如图,在三棱锥PABC中,ABBC=2PAPBPCAC=4,OAC的中点.
(1)证明:PO⊥平面ABC
(2)若点MBC上且 =2,求点M到平面PAB的距离.

共享时间:2023-07-03 难度:2 相似度:1
169699. (2024•西安八十五中•高一下期末) 如图1,平面四边形ABCD中,ABACABACACCDEBC的中点,将△ACD沿对角线AC折起,使CDBC,连接BD,得到如图2所示的三棱锥DABC
(1)证明:平面ADE⊥平面BCD
(2)已知直线DE与平面ABC所成的角为,求二面角ABDC的余弦值.

共享时间:2024-07-08 难度:2 相似度:1

dygzsxyn

2023-10-26

高中数学 | 高二上 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!