首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

4513. (2018•师大附中•模拟) 如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,A(2,1).
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的函数表达式;
(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
德优题库
共享时间:2018-06-04 难度:4
[考点]
二次函数与面积最值问题,三角形的面积,等腰直角三角形,全等三角形的判定与性质,平行四边形的面积,动点平行四边形,四边形综合题,
[答案]
答案详见解析
[解析]
解:
(1)如图1,过AACx轴于点C,过BBDx轴于点D

∵△AOB为等腰三角形,
AOBO
∵∠AOB=90°,
∴∠AOC+∠DOB=∠DOB+∠OBD=90°,
∴∠AOC=∠OBD
在△ACO和△ODB

∴△ACO≌△ODBAAS),
A(2,1),
ODAC=1,BDOC=2,
B(﹣1,2);
(2)∵抛物线过O点,
∴可设抛物线解析式为yax2+bx
AB两点坐标代入可得,解得
∴经过ABO原点的抛物线解析式为yx2x
(3)∵四边形ABOP
∴可知点P在线段OA的下方,
PPEy轴交AO于点E,如图2,

设直线AO解析式为ykx
A(2,1),
k
∴直线AO解析式为yx
P点坐标为(tt2t),则Ett),
PEt﹣(t2t)=﹣t2+t=﹣t﹣1)2+
SAOPPE×2=PE═﹣t﹣1)2+
A(2,1)可求得OAOB
SAOBAOBO
S四边形ABOPSAOB+SAOP=﹣t﹣1)2++=﹣t﹣1)2+
∵﹣<0,
∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,﹣),
综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,﹣).
[点评]
本题考查了"三角形的面积   全等三角形的判定与性   等腰直角三角形   四边形综合题   平行四边形的面积   动点平行四边形   二次函数与面积最值问题   ",属于"综合题",熟悉知识点是解题的关键
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
1052. (2019•陕西省•真题) 问题提出:
1)如图1,已知△ABC,试确定一点D,使得以ABCD为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
2)如图2,在矩形ABCD中,AB4BC10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC90°,求满足条件的点P到点A的距离;
问题解决:
3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
共享时间:2019-07-05 难度:5 相似度:1.14
882. (2013•陕西省•真题) 问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

 
共享时间:2013-11-18 难度:3 相似度:1.14
775. (2019•陕西省•副题) 如图,在△ABC中,DBC边的中点,过点DDEAB,并与AC交于点E,延长DE到点F,使得EFDE,连接AF
求证:AFBC
共享时间:2019-07-10 难度:3 相似度:1.14
806. (2015•陕西省•真题) 如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.

 
共享时间:2015-08-18 难度:3 相似度:1.14
811. (2015•陕西省•真题) 如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为      
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
共享时间:2015-08-18 难度:5 相似度:1.14
838. (2014•陕西省•真题) 如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.
求证:AB=BF.

                                                                                                                  
共享时间:2014-09-18 难度:2 相似度:1.14
1045. (2019•陕西省•真题) 如图,点AEFB在直线l上,AEBFACBD,且ACBD,求证:CFDE
                                                                                                                     
共享时间:2019-07-05 难度:3 相似度:1.14
6119. (2017•西工大附中•模拟) 问题发现:
(1)如图1,已知线段AB.画出平面内满足∠ACB=90°的所有点C组成的图形.
德优题库
问题探究:
(2)如图2,菱形ABCD的对角线AC与BD交于点O,点E、F分别是AC和BD上的动点,且EF=6,点P为EF的中点.已知AC=16,BD=12.连接BP、CP,求△BPC面积的最大值.
问题解决:
(3)如图3,等腰直角三角形ABC的斜边AC=8,点D、E分别是直角边AB和BC上的动点,以DE为斜边在DE的左下侧(包括左侧和下侧)作等腰直角三角形DFE,连接CF,则线段CF的长度是否存在最小值,若存在,请求出这个最小值;若不存在,请说明理由.
共享时间:2017-07-21 难度:5 相似度:1.03
4758. (2018•高新一中•模拟) 如图,正方形ABCD中,点E、F分别为边CD、AD上的点,CE=DF,AE、BF交于点H
(1)求证:AE=BF;
(2)若AB=4,CE=1,求AH的长.
德优题库
共享时间:2018-06-27 难度:4 相似度:0.79
652. (2019•陕西省•副题) 问题提出
1)如图,已知直线ll外一点A,试在直线l上确定BC两点,使∠BAC90°,并画出这个RtABC
问题探究
2)如图O是边长为28的正方形ABCD的对称中心,MBC边上的中点,连接OM.试在正方形ABCD的边上确定点N,使线段ONOM将正方形ABCD分割成面积之比为16的两部分.求点N到点M的距离.
问题解决
3)如图,有一个矩形花园ABCDAB30mBC40m.根据设计要求,点EF在对角线BD上,且∠EAF60°,并在四边形区域AECF内种植一种红色花卉,在矩形内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植至少需费用多少元?(结果保留整数.参考数据:1.41.7
共享时间:2019-07-10 难度:5 相似度:0.79
4688. (2018•交大附中•模拟) 已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).
(1)求抛物线L的顶点坐标和A点坐标.
(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?
(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形?若存在,请直接写出抛物线L2的表达式;若不存在,请说明理由.
共享时间:2018-06-25 难度:4 相似度:0.69
6044. (2017•铁一中学•模拟) 小敏在研究最值问题时遇到了这样的一个问题:如图1,在矩形ABCD中,AB=6,AD=8,E、F、G、H分别在矩形ABCD的边AD、AB、BC、CD上,则四边形EFGH的周长是否存在最小值?她决定按照老师讲的由特殊到一般逐步化归的思路去研究,请你帮助她完成下面的探究过程.
探究1:如图2,在AF=2,DH=5的条件下,请在图2中画出周长最小的四边形EFGH,并求出周长的最小值;
探究2:在探究1的启发下,小敏画出了图3:作F关于AD的对称点F1,作F关于BC的对称点F2,作F1关于CD的对称点F3,连接F2F3交CD于H,交BC于点G,连接F1H交AD于E,连接EF、FG,借助图3,他发现四边形EFGH的周长有最小值,并顺利解决了遇到的这个问题.请求出四边形EFGH的周长的最小值.
拓广探究:解决了上述问题后,小敏又想到了新的问题,当四边形EFGH的周长最小时,四边形EFGH的面积是否存在最大值?请帮助小敏解决这个问题,若存在,请求出此时面积的最大值,若不存在请说明理由.
德优题库
共享时间:2017-05-30 难度:5 相似度:0.69
915. (2017•陕西省•真题) 如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.
                                                                                                                              
共享时间:2017-07-10 难度:4 相似度:0.64
957. (2016•陕西省•真题) 如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.
求证:AF∥CE.
                                                                                                                         
共享时间:2016-07-11 难度:3 相似度:0.64
4681. (2018•交大附中•模拟) 如图,已知△ABC,点DAB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC的面积与△DBC的面积相等(保留作图痕迹,不写作法).
                                                                                                                                     
共享时间:2018-06-25 难度:3 相似度:0.64

sdfz512

2018-06-04

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 816
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!