首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

231833. (2025•西工大附中•高二下一月) 已知函数fx)=ex﹣1﹣xax2
(1)当a=0时,求fx)的单调区间;
(2)当x≥0时,若不等式fx)≥0恒成立,求实数a的取值范围;
(3)若x>0,证明:(ex﹣1)lnx+1)>x2
共享时间:2025-04-10 难度:2
[考点]
利用导数研究函数的单调性,不等式恒成立的问题,
[答案]
(1)fx)的单调递减区间为(﹣∞,0],单调递增区间为[0,+∞);
(2)
(3)证明过程见解析.
[解析]
解:(1)当a=0时,fx)=ex﹣1﹣x,函数定义域为R,
可得f′(x)=ex﹣1,
x<0时,f′(x)<0;当x>0时,f′(x)>0,
所以fx)在(﹣∞,0]上单调递减,在[0,+∞)上单调递增;
(2)已知f′(x)=ex﹣1﹣2ax
hx)=ex﹣1﹣2ax,函数定义域为R,
可得h′(x)=ex﹣2a
当2a≤1,即时,
此时h′(x)≥0,hx)单调递增,
所以hx)≥h(0),
f′(x)≥f′(0)=0,
所以fx)在[0,+∞)上为增函数,
此时fx)≥f(0)=0,满足条件;
当2a>1时,
当0≤xln2a时,h′(x)<0,hx)单调递减,
所以hx)<h(0)=0,
f′(x)<f′(0)=0,
所以fx)在(0,ln2a)上单调递减,
此时fx)<f(0)=0,不满足题意,
综上,实数a的取值范围为
(3)证明:由(2)得,当x>0时,

要证(ex﹣1)lnx+1)>x2
需证
即证题干
要证

可得
x>0时,F′(x)>0恒成立,
所以Fx)在(0,+∞)上单调递增,
因为F(0)=0.
所以Fx)>0恒成立,原不等式成立.
[点评]
本题考查了"利用导数研究函数的单调性,不等式恒成立的问题,",属于"易错题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
166759. (2024•建大附中•一模) 若函数fx)在[ab]上存在x1x2ax1x2b),使得f'(x2)=,则称fx)是[ab]上的“双中值函数”,其中x1x2称为fx)在[ab]上的中值点.
(1)判断函数fx)=x3﹣3x2+1是否是[﹣1,3]上的“双中值函数”,并说明理由.
(2)已知函数,存在mn>0,使得fm)=fn),且fx)是[nm]上的“双中值函数”,x1x2fx)在[nm]上的中值点.
①求a的取值范围;
②证明:x1+x2a+2.
共享时间:2024-03-13 难度:1 相似度:1.5
169396. (2024•西安中学•高三上期末) 已知函数fx)=,其中m为正实数.
(1)试讨论函数fx)的单调性;
(2)设gx)=f′(x)+lnxmx2﹣1,若存在x∈[,1],使得不等式gx)<﹣2成立,求m的取值范围.
共享时间:2024-02-08 难度:1 相似度:1.5
169373. (2024•师大附中•高二上期末) 已知函数fx)=x3ax2a2x+5(a∈R).
(1)讨论fx)的单调性;
(2)若fx)有且只有两个零点,求a的值.
共享时间:2024-02-14 难度:1 相似度:1.5
169172. (2020•高新一中•三模) 已知函数fx)=lnx+x2+axa∈R),gx)=ex+x2x
(1)讨论fx)的单调性;
(2)定义:对于函数fx),若存在x0,使fx0)=x0成立,则称x0为函数fx)的不动点.如果函数Fx)=fx)﹣gx)存在不动点,求实数a的取值范围.
共享时间:2020-04-01 难度:1 相似度:1.5
168759. (2021•西安中学•八模) 已知函数gx)是fx)的导函数.
(1)若gx)在(0,+∞)上单调递增,求m的取值范围;
(2)设Fx)=gx)﹣fx),证明:当时,Fx)有且仅有两个零点.
共享时间:2021-06-14 难度:1 相似度:1.5
19752. (2021•陕西省•乙卷) 已知函数fx)=x3x2+ax+1.
(1)讨论fx)的单调性;
(2)求曲线yfx)过坐标原点的切线与曲线yfx)的公共点的坐标.
共享时间:2021-06-21 难度:4 相似度:1
168828. (2021•西工大附中•十二模) 已知函数fx)=exx2mx﹣1.
(Ⅰ)当m=1时,求证:x≥0时,fx)≥0;
(Ⅱ)当m≤1时,试讨论函数yfx)的零点个数.
共享时间:2021-07-26 难度:2 相似度:1
168460. (2021•西安中学•七模) 已知函数fx)=
(1)讨论fx)的单调性;
(2)若x1x2x1x2)是fx)的两个零点,求证:
共享时间:2021-06-02 难度:2 相似度:1
168529. (2021•西安中学•六模) 已知函数fx)=lnx+a(1﹣x).
(1)讨论fx)的单调性;
(2)当fx)有最大值,且最大值大于2a﹣2时,求a的取值范围.
共享时间:2021-05-18 难度:2 相似度:1
168575. (2021•西安中学•九模) 设函数
(1)当a=1时,求曲线yfx)在点(1,f(1))处的切线方程;
(2)若函数yfx)在其定义域内为增函数,求实数a的取值范围.
共享时间:2021-06-30 难度:2 相似度:1
168689. (2021•西安中学•仿真) 已知函数fx)=xsinx+cosx+
(1)当a=0时,求fx)在[﹣π,π]上的单调区间;
(2)当a>0时,讨论fx)在[0,π]上的零点个数.
共享时间:2021-06-10 难度:2 相似度:1
168712. (2021•西安中学•仿真) 已知函数
(Ⅰ)当a=1,求函数yfx)的图象在x=0处的切线方程;
(Ⅱ)若函数fx)在(0,1)上单调递增,求实数a的取值范围.
共享时间:2021-06-05 难度:2 相似度:1
168781. (2021•西安中学•八模) 已知函数fx)=ex﹣(x+mlnx+m)+xm≤2.
(1)当m=1时,求函数在x=0处的切线方程;
(2)证明:函数fx)为单调递增函数.
共享时间:2021-06-19 难度:2 相似度:1
169034. (2020•西安中学•三模) 已知函数fx)=(xexx).
(1)求fx)的导函数;
(2)求fx)在区间[,+∞)上的取值范围.
共享时间:2020-04-01 难度:2 相似度:1
168874. (2021•西工大附中•十模) 已知函数fx)=2lnxaxa∈R.
(Ⅰ)讨论fx)的单调性;
(Ⅱ)当a=﹣1时,令gx)=x2fx),其导函数为g'(x),设x1x2是函数gx)的两个零点,判断是否为g'(x)的零点?并说明理由.
共享时间:2021-07-03 难度:2 相似度:1

dygzsxyn

2025-04-10

高中数学 | 高二下 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 4
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!