首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

231145. (2016•西工大附中•四模) 在平面直角坐标系xOy中,已知四点A(12,0),B(﹣4,0),C(0,﹣3),D(﹣3,﹣4),把坐标系平面沿y轴折为直二面角.

(Ⅰ)求证:BCAD
(Ⅱ)求平面ADO和平面ADC的夹角的余弦值;
(Ⅲ)求三棱锥CAOD的体积.
共享时间:2016-04-17 难度:3
[考点]
棱柱、棱锥、棱台的体积,直线与平面垂直,二面角的平面角及求法,
[答案]
见试题解答内容
[解析]
解:(Ⅰ)证明:∵B(﹣4,0),C(0,﹣3),D(﹣3,﹣4),
kODkBC=•=﹣1,
ODBC
当把坐标系平面沿y轴折为直二面角后,OA⊥平面BOC
OABC
OAODO
BC⊥平面AOD
AD⊂平面AOD
BCAD
(Ⅱ)建立以O为坐标原点,OAOyOB分别为xyz轴的空间直角坐标系如图:
A(12,0,0),B(0,0,4),C(0,﹣3,0),D(0,﹣4,3),
则由(1)知平面ADO的一个法向量为=(0,﹣3,﹣4),
设平面ACD的法向量为=(xyz),
=(﹣12,﹣3,0)
=(﹣12,﹣4,3),=(0,﹣1,3),
=﹣12x﹣3y=0,=﹣y+3z=0,
y=12,则x=﹣3,z=4,即=(﹣3,12,4),
则cos<>=
∵平面ADO和平面ADC的夹角是锐角,
∴平面ADO和平面ADC的夹角的余弦值是
(Ⅲ)VCAODVACOD×OASOCD×3×3×12=18.

[点评]
本题考查了"棱柱、棱锥、棱台的体积,直线与平面垂直,二面角的平面角及求法,",属于"难典题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
261. (2014•陕西省•真题) 四面体ABCD及其三视图如图所示,平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH
)求四面体ABCD的体积;
)证明:四边形EFGH是矩形.
                                                                                                               
 
共享时间:2014-07-07 难度:3 相似度:1.67
167807. (2024•西安一中•二模) 如图所示,在四棱锥PABCD中,PA⊥平面ABCDADBCADCD,且,|PA|=2.
(1)求三棱锥BACP的体积;
(2)求证:ABPC

共享时间:2024-03-29 难度:2 相似度:1.67
167349. (2023•长安区一中•高三上二月) 如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AFPC于点FFECD,交PD于点E
(1)证明:CF⊥平面ADF
(2)求二面角DAFE的余弦值.

共享时间:2023-12-15 难度:2 相似度:1.67
166835. (2024•西安八十五中•一模) 如图,在三棱锥PABC中,PA⊥平面ABC
(1)求证:BC⊥平面PAB
(2)求二面角APCB的大小.

共享时间:2024-03-12 难度:2 相似度:1.67
166799. (2024•西安工业大学附中•高二上一月) 如图,在三棱台ABCA1B1C1中,∠BAC=90°,ABAC=4,A1AA1B1=2,侧棱A1A⊥平面ABC,点D是棱CC1的中点.
(1)证明:BB1⊥平面AB1C
(2)求平面BCD与平面ABD的夹角的余弦值.

共享时间:2024-10-20 难度:2 相似度:1.67
167670. (2024•西安中学•一模) 如图,在三棱柱ABCA1B1C1中,直线C1B⊥平面ABC,平面AA1 C1C⊥平面BB1C1C
(1)求证:ACBB1
(2)若ACBCBC1=2,在棱A1B1上是否存在一点P,使二面角PBCC1的余弦值为?若存在,求的值;若不存在,请说明理由.

共享时间:2024-03-11 难度:2 相似度:1.67
167238. (2023•周至六中•高二上一月) 如图,长方体ABCDA1B1C1D1的侧面A1ADD1是正方形.
(1)证明:A1D⊥平面ABD1
(2)若AD=2,AB=4,求二面角B1AD1C的余弦值.

共享时间:2023-10-26 难度:2 相似度:1.67
167965. (2023•师大附中•十一模) 如图所示,已知三棱台ABCA1B1C1中,AB1BB1CB1BB1,∠ABB1=∠CBB1=60°,ABBCBB1=1.
(1)求二面角ABB1C的余弦值;
(2)设EF分别是棱ACA1C1的中点,若EF⊥平面ABC,求棱台ABCA1B1C1的体积.

共享时间:2023-07-18 难度:2 相似度:1.67
167940. (2023•师大附中•三模) 在三棱锥SABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABCMN分别为ABSB的中点.
(1)证明:ACSB
(2)求二面角N﹣CMB正弦值的大小.

共享时间:2023-04-08 难度:2 相似度:1.67
22111. (2021•西安中学•二模) 德优题库如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为4的等边三角形,∠A1AB=∠A1AC,D为BC的中点.
(1)证明:BC⊥平面A1AD.
(2)若△A1AD是等边三角形,求二面角D-AA1-C的正弦值.
共享时间:2021-03-18 难度:3 相似度:1.67
167830. (2024•长安区一中•一模) 如图,已知ABCDCDEF都是直角梯形,ABDCDCEFAB=5,DC=3,EF=1,∠BAD=∠CDE=60°,二面角FDCB的平面角为60°.设MN分别为AEBC的中点.
(Ⅰ)证明:FNAD
(Ⅱ)求直线BM与平面ADE所成角的正弦值.

共享时间:2024-03-04 难度:3 相似度:1.34
167326. (2023•长安区一中•高三上二月) 如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PABD
(2)求证:平面BDE⊥平面PAC
(3)当PA∥平面BDE时,求三棱锥EBCD的体积.

共享时间:2023-12-21 难度:3 相似度:1.34
167564. (2023•关山中学•高二上一月) 如图,在直三棱柱ABCA1B1C1中,AA1AC=4,AB=3,BC=5,点D是线段BC的中点.请用空间向量的知识解答下列问题:
(1)求证:ABA1C
(2)试求二面角DCA1A的余弦值.

共享时间:2023-10-16 难度:1 相似度:1.33
167370. (2024•长安区•高二下一月) 将一条长为6的铁丝截成9段,拼成一个正三棱柱,求该三棱柱体积的最大值.
共享时间:2024-04-22 难度:1 相似度:1.33
167854. (2024•西工大附中•模拟) 如图,四棱锥PABCD,侧面PAD是边长为2的正三角形且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为棱PC上的动点且
(Ⅰ)求证:△PBC为直角三角形;
(Ⅱ)试确定λ的值,使得三棱锥PAMD的体积为

共享时间:2024-03-05 难度:1 相似度:1.33

dygzsxyn

2016-04-17

高中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 3
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!