首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

169718. (2023•师大附中•高一下期末) 某市据实际情况主要采取以下四种扶贫方式:第一,以工代赈方式,指政府投资建设基础设施工程,组织贫困地区群众参加工程建设并获得劳务报酬,第二,整村推进方式指以贫困村为具体帮扶对象,帮扶对口到村,资金安排到村,扶贫效益到户,第三,科技扶贫方式,指组织科技人员深入贫困乡村实地指导、技术培训等传授科技知识,第四,移民搬迁方式,指对目前极少数居住在生存条件恶劣、自然资源贫乏地区的特困人口,实行自愿移民,该市为了2020年更好的完成精准扶贫各项任务,2020年初在全市贫困户(分一般贫困户和“五特”户两类)中随机抽取了5000户就目前的主要四种扶贫方式行了问卷调查,支持每种扶贫方式的结果如表:
调查的贫困户 支持以工代赈户数 支持整村推进户数 支持科技扶贫户数 支持移民搬迁户数
一般贫困户 1200 1600 b 200
五特户(五保户和特困户) 100 a c 100
已知在被调查的5000户中随机抽取一户支持整村推进的概率为0.36.
(Ⅰ)现用分层抽样的方法在所有参与调查的贫困户中抽取50户进行深入访谈,问应在支持科技扶贫户数中抽取多少户?
(Ⅱ)虽然“五特”户在全市的贫困户所占比例不大,但本次调查要有意义,其中这次调查的“五特”户户数不能低于被调查总户数的9.2%,已知b≥1530,c≥58,求本次调查有意义的概率是多少?
共享时间:2023-07-17 难度:2
[考点]
古典概型及其概率计算公式,分层随机抽样,
[答案]
(Ⅰ)16户;(Ⅱ)
[解析]
解:(Ⅰ)∵支持整村推进户数为5000×0.36=1800户.
b+c=5000﹣1200﹣100﹣1800﹣300=1600户.
∴应在支持科技扶贫户数中抽取的户数为:(户).
(Ⅱ)∵a=200
五特户户数不能低于被调查总户数的9.2%,
∴即5000×9.2%=460,
c≥60有意义,又b≥1530,c≥58,b+c=1600,bc情况列举如下:
(1530,70),(1531,69),(1532,68),(1533,67),(1534,66),(1535,65),(1536,64),(1537,63),(1538,62),(1539,61),(1540,60),(1541,59),(1542,58)共13种情况.
∴本次调查有意义的概率
[点评]
本题考查了"古典概型及其概率计算公式,分层随机抽样,",属于"易错题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
168527. (2021•西安中学•六模) 一汽车厂生产ABC三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
  轿车A 轿车B 轿车C
舒适型 100 150 z
标准型 300 450 600
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分x的值如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数xi(1≤i≤8,i∈N),设样本平均数为,求|xi|≤0.5的概率.
共享时间:2021-05-18 难度:2 相似度:2
166795. (2024•西安工业大学附中•高二上一月) 某地教育研究中心为了调查该地师生对“高考使用全国统一命题的试卷”这一看法,对该市区部分师生进行调查,先将调查结果统计如下:
  赞成 反对 总计
教师 120    
学生   40  
总计 280 120  
(1)请将表格补充完整,若该地区共有教师30000人,以频率为概率,试估计该地区教师反对“高考使用全国统一命题的试卷”这一看法的人数;
(2)按照分层抽样从“反对”的人中先抽取6人,再从中随机选出3人进行深入调研,求深入调研中恰有1名学生的概率.
共享时间:2024-10-20 难度:1 相似度:1.5
171260. (2024•师大附中•高二下期中) 某学校安排甲、乙、丙三个班级同时到学校礼堂参加联欢晚会,已知甲班艺术生占比8%,乙班艺术生占比6%,丙班艺术生占比5%.学生自由选择座位,先到者先选.甲、乙、丙三个班人数分别占总人数的.若主持人随机从场下学生中选一人参与互动.
(1)求选到的学生是艺术生的概率;
(2)如果选到的学生是艺术生,判断其来自哪个班的可能性最大.
共享时间:2024-05-17 难度:1 相似度:1.5
274. (2014•陕西省•真题) 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) 0 1000 2000 3000 4000
车辆数(辆) 500 130 100 150 120
)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;
)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
共享时间:2014-07-07 难度:3 相似度:1
167646. (2024•西安中学•一模) 第18届亚洲杯将于2024年1月12日在卡塔尔举行,该比赛预计会吸引亿万球迷观看.为了了解某校大学生喜爱观看足球比赛是否与性别有关,该大学记者站随机抽取了100名学生进行统计,其中女生喜爱观看足球比赛的占女生人数的,男生有10人表示不喜欢看足球比赛.
(1)完成下面2×2列联表,试根据独立性检验,判断是否有99.9%的把握认为喜爱观看足球比赛与性别有关联?
  合计
喜爱看足球比赛      
不喜爱看足球比赛      
合计 60    
(2)在不喜爱观看足球比赛的观众中,按性别用分层随机抽样的方式抽取8人,再从这8人中随机抽取2人参加校记者站的访谈节目,求抽到的男生人数为1人的概率.
附:,其中na+b+c+d
Pk2k 0.050 0.010 0.001
k 3.841 6.635 10.828
共享时间:2024-03-07 难度:2 相似度:1
167714. (2024•西安一中•五模) 某企业生产的产品按质量分为一等品和二等品,该企业计划对现有生产设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取200件产品作为样本,产品的质量情况统计如表:
  一等品 二等品 合计
设备改造前 120 80 200
设备改造后 150 50 200
合计 270 130 400
(1)判断是否有99%的把握,认为该企业生产的这种产品的质量与设备改造有关;
(2)按照分层抽样的方法,从设备改造前的产品中取得了5件产品,其中有3件一等品和2件二等品.现从这5件产品中任选2件,求选出的这2件全是一等品的概率.
附:,其中na+b+c+d
PK2k0 0.050 0.010 0.001
k0 3.841 6.635 10.828

共享时间:2024-05-13 难度:2 相似度:1
167808. (2024•西安一中•二模) 某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:
  喜欢“应用统计”课程 不喜欢“应用统计”课程 总计
男生 20 5 25
女生 10 20 30
总计 30 25 55
(1)判断能否在犯错误的概率不超过0.005的前提下认为喜欢“应用统计”课程与性别有关?(公式和对照表见题后)
(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生做进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.
附:na+b+c+d
PK2k0 0.010 0.005
k0 6.635 7.879
共享时间:2024-03-29 难度:2 相似度:1
168618. (2021•西安中学•二模) 某大型商场举办店庆十周年抽奖答谢活动,凡店庆当日购物满1000元的顾客可从装有4个白球和2个黑球的袋子中任意取出2个球,若取出的都是黑球获奖品A,若取出的都是白球获奖品B,若取出的两球异色获奖品C
(Ⅰ)求某顾客抽奖一次获得奖品B的概率;
(Ⅱ)若店庆当天有1500人次抽奖,估计有多少人次获得奖品C
共享时间:2021-03-17 难度:2 相似度:1
168917. (2021•高陵一中•二模) 某大型商场举办店庆十周年抽奖答谢活动,凡店庆当日购物满1000元的顾客可从装有4个白球和2个黑球的袋子中任意取出2个球,若取出的都是黑球获奖品A,若取出的都是白球获奖品B,若取出的两球异色获奖品C
(Ⅰ)求某顾客抽奖一次获得奖品B的概率;
(Ⅱ)若店庆当天有1500人次抽奖,估计有多少人次获得奖品C
共享时间:2021-03-23 难度:2 相似度:1
168987. (2020•西安中学•一模) 甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.得到甲、乙两位学生成绩的茎叶图.
(Ⅰ)现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;
(Ⅱ)若将频率视为概率,求乙同学在一次数学竞赛中成绩高于84分的概率;
(Ⅲ)求在甲同学的8次预赛成绩中,从不小于80分的成绩中随机抽取2个成绩,列出所有结果,并求抽出的2个成绩均大于85分的概率.

共享时间:2020-03-02 难度:2 相似度:1
169170. (2020•高新一中•三模) 凤梨穗龙眼原产厦门,是厦门市的名果,栽培历史已有100多年.龙眼干的级别按直径d的大小分为四个等级(如表).
dmm d<21 21d<24 24d<27 d≥27
级别 三级品 二级品 一级品 特级品
某商家为了解某农场一批龙眼干的质量情况,随机抽取了100个龙眼干作为样本(直径分布在区间[18,33]),统计得到这些龙眼下的直径的频数分布表如下:
dmm [18,21) [21,24) [24,27) [27,30) [30,33]
频数 1 m 29 n 7
用分层抽样的方法从样本的一级品和特级品中抽取6个,其中一级品有2个.
(1)求mn的值,并估计这批龙眼干中特级品的比例;
(2)已知样本中的100个龙眼干约500克,该农场有500千克龙眼干待出售,商家提出两种收购方案:
方案A:以60元/千克收购;
方案B:以级别分装收购,每袋100个,特级品40元/袋、一级品30元/袋、二级品20元/袋、三级品10元/袋.
用样本的频率分布估计总体分布,哪个方案农场的收益更高?并说明理由.
共享时间:2020-04-01 难度:2 相似度:1
169812. (2023•西安中学•高一下期末) 袋中装有6个形状、大小完全相同的球,其中黑球2个、白球2个、红球2个,规定取出一个黑球记0分,取出一个白球记1分,取出一个红球记2分,抽取这些球的时候,谁也无法看到球的颜色,首先由甲取出3个球,并不再将它们放回原袋中,然后由乙取出剩余的3个球,规定取出球的总积分多者获胜.
(1)求甲、乙成平局的概率;
(2)从概率的角度分析先后取球的顺序是否影响比赛的公平性.
共享时间:2023-07-12 难度:2 相似度:1
171632. (2024•西安工业大学附中•高二下期中) 中国传统文化中,过春节吃饺子,饺子是我国的传统美食,不仅味道鲜美而且寓意美好.现有甲、乙两个箱子装有大小、外观均相同的速冻饺子,已知甲箱中有3盒肉馅的“饺子”,2盒三鲜馅的“饺子”和5盒青菜馅的“饺子”,乙箱中有3盒肉馅的“饺子”,3个三鲜馅的“饺子”和4个青菜馅的“饺子”.问:
(1)从甲箱中取出一盒“饺子”是肉馅的概率是多少?
(2)若依次从甲箱中取出两盒“饺了”,求第一盒是肉馅的条件下,第二盒是三鲜馅的概率;
(3)若先从甲箱中随机取出一盒“饺子”放入乙箱,再从乙箱中随机取出一盒“饺子”,从乙箱取出的“饺子”是肉馅的概率.
共享时间:2024-05-25 难度:2 相似度:1
166312. (2024•西安中学•高三上二月) 传球是排球运动中最基本、最重要的一项技术.传球是由准备姿势、迎球、击球、手型、用力5个动作部分组成.其中较难掌握的是触球时的手型,因为触球时手型正确与否直接影响手控制球的能力和传球的准确性,对初学者来说掌握了正确手型才能保证正确击球点和较好的运用手指,手腕的弹力.从小张、小胡、小郭、小李、小陈这5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出.
(1)记小胡、小李、小陈这三人中被抽到的人数为随机变量X,求X的分布列;
(2)若刚好抽到小胡、小李、小陈三个人相互做传球训练,且第1次由小胡将球传出,记n次传球后球在小胡手中的概率为pnn=1,2,3,⋯.
①直接写出p1p2p3的值;
②求pn+1pn的关系式(n∈N*),并求
共享时间:2024-12-28 难度:4 相似度:0.75

dygzsxyn

2023-07-17

高中数学 | 高一下 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!