首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

168503. (2021•西安中学•三模) 在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠CAD=90°,EFBCEFBCAC=2,AEEC
(1)求证:ADEF四点共面,且平面ADEF⊥平面CDE
(2)若二面角EACF的大小为45°,求点D到平面ACF的距离.

共享时间:2021-04-03 难度:2
[考点]
平面与平面垂直,点、线、面间的距离计算,
[答案]
(1)证明过程见解答;
(2)
[解析]
解:(1)证明:∵四边形ABCD为平行四边形,∴ADBC
EFBC,∴EFAD
ADEF四点共面,
∵∠CAD=90°,∴ACAD
∵平面ACE⊥平面ABCD,平面ACE∩平面ABCDAC
AD⊥平面ACE
CE⊂平面ACE,∴CEAD
AC=2,AEEC,∴CE2+AE2AC2,∴CEAE
AEADAADAE⊂平面ADEF
CE⊥平面ADEF
CE⊂平面CDE,∴平面ADEF⊥平面CDE
(2)∵平面ACE⊥平面ABCD,∠CAD=90°,
∴如图以A为原点建立空间直角坐标系Oxyz
AD=2a,则A(0,0,0),C(2,0,0),E(1,0,1),F(1,﹣a,1),
=(2,0,0),=(1,﹣a,1),
设平面ACF的法向量=(xyz),
,取y=1,得=(0,1,a),
平面ACE的一个法向量=(0,1,0),
∵二面角EACF的大小为45°,
∴cos45°=
解得a=1,∴AD=2,=(0,2,0),
D(0,2,0),平面ACF的法向量=(0,1,1),
∴点D到平面ACF的距离为d

[点评]
本题考查了"平面与平面垂直,点、线、面间的距离计算,",属于"必考题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
168825. (2021•西工大附中•十二模) 如图,在三棱柱ABCA1B1C1中,四边形B1BCC1是菱形,∠B1BC=60°,ABBCABBB1D为棱BC的中点.
(1)求证:平面AB1D⊥平面ABC
(2)若ABBC=2,求点C到平面AB1D的距离.

共享时间:2021-07-26 难度:2 相似度:2
166857. (2024•西安八十五中•高二上一月) 如图,在直三棱柱ABCA1B1C1中,M为棱AC的中点,ABBCAC=2,AA1
(1)求证:B1C∥平面A1BM
(2)求证:AC1⊥平面A1BM
(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时的值;如果不存在,请说明理由.

共享时间:2024-10-13 难度:1 相似度:1.5
168227. (2021•西安中学•四模) 如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.
(1)证明:MN∥平面C1DE
(2)求点C到平面C1DE的距离.

共享时间:2021-04-28 难度:1 相似度:1.5
168274. (2021•西安中学•五模) 在四棱锥PABCD中,ABCDCD=2ABACBD相交于点M,点N在线段AP上,AN=λAP(λ>0),且MN∥平面PCD
(1)求实数λ的值;
(2)若,∠BAD=60°,求点N到平面PCD的距离.

共享时间:2021-05-15 难度:1 相似度:1.5
167563. (2023•关山中学•高二上一月) 已知A(3,3,1),B(1,0,5),求:
(1)线段AB的中点坐标和线段AB长度;
(2)到AB两点距离相等的点Pxyz)的坐标xyz满足的条件.
共享时间:2023-10-16 难度:1 相似度:1.5
167127. (2023•西安中学•高二上一月) 如图,在三棱柱ABCA1B1C1中,AA1⊥平面ABCABACABACAA1=1,M为线段A1C1上一点.
(1)求证:BMAB1
(2)若直线AB1与平面BCM所成角为,求点A1到平面BCM的距离.

共享时间:2023-10-30 难度:1 相似度:1.5
169719. (2023•师大附中•高一下期末) 如图.在四棱锥PABCD中,平面PAD⊥底面ABCDABCD,∠DAB=60°,PAPD,且PAPDAB=2CD=2.
(1)证明:ADPB
(2)求点A到平面PBC的距离.

共享时间:2023-07-17 难度:1 相似度:1.5
169214. (2025•师大附中•高二上期末) 已知四棱柱ABCDA1B1C1D1的所有棱长相等,且∠A1AB=∠A1AD=∠BAD=60°.
①证明:平面A1AC⊥平面A1BD
②求直线BC1与平面A1AC所成角的正弦值?

共享时间:2025-02-11 难度:2 相似度:1
169350. (2024•师大附中•高一下期末) 在三棱锥PABCD中,底面ABC为直角三角形,ABBCPA⊥平面ABC
(1)证明:BCPB
(2)若DAC的中点,且PA=2AB=4,求点D到平面PBC的距离.

共享时间:2024-07-09 难度:2 相似度:1
168194. (2023•西工大附中•八模) 如图1,四边形ABCD为矩形,BC=2ABEAD的中点,将△ABE、△DCE分别沿BECE折起得图2,使得平面ABE⊥平面BCE,平面DCE⊥平面BCE
(Ⅰ)求证:平面ABE⊥平面DCE
(Ⅱ)若F为线段BC的中点,求直线FA与平面ADE所成角的正弦值.

共享时间:2023-06-11 难度:2 相似度:1
169699. (2024•西安八十五中•高一下期末) 如图1,平面四边形ABCD中,ABACABACACCDEBC的中点,将△ACD沿对角线AC折起,使CDBC,连接BD,得到如图2所示的三棱锥DABC
(1)证明:平面ADE⊥平面BCD
(2)已知直线DE与平面ABC所成的角为,求二面角ABDC的余弦值.

共享时间:2024-07-08 难度:2 相似度:1
169612. (2024•滨河中学•高一下期末) 如图,在四棱锥PABCD中,平面PAB⊥平面ABCD,|AB|=2,|BC|=|CD|=1,ABCD,∠ABC=90°,∠APB=90°,|PA|=|PB|.
(1)求点D到平面PAC的距离;
(2)求二面角ABDP的正切值.

共享时间:2024-07-23 难度:2 相似度:1
168481. (2021•西安中学•三模) 如图所示,ABCD是边长为2的正方形,AE⊥平面BCE,且AE=1.
(Ⅰ)求证:平面ABCD⊥平面ABE
(Ⅱ)线段AD上是否存在一点F,使三棱锥CBEF的高h?若存在,请求出的值;若不存在,请说明理由.

共享时间:2021-04-14 难度:2 相似度:1
169550. (2024•铁一中学•高二上期末) 如图,在四棱锥PABCD中,底面ABCD为直角梯形,ADBC.∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PAPD=2,BCAD=1,CD
(1)求证:平面MQB⊥平面PAD
(2)若二面角MBQC的大小为30°,求直线QM与平面PAD所成角的正弦值.

共享时间:2024-02-22 难度:2 相似度:1
168573. (2021•西安中学•九模) .如图,在三棱柱ABCA1B1C1中,点C在平面A1B1C1内的射影点为A1B1的中点O,且ACBCABAA1=1:1::2.
(1)求证:AB⊥平面OCC1
(2)若CO,求点C到平面ABO的距离.

共享时间:2021-06-30 难度:2 相似度:1

lk@dyw.com

2021-04-03

高中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 9
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!