首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

230475. (2025•西安中学•二模) 已知平面上动点Qxy)到F(0,1)的距离比Qxy)到直线ly=﹣2的距离小1,记动点Qxy)的轨迹为曲线C
(1)求曲线C的方程;
(2)设点P的坐标为(0,﹣1),过点P作曲线C的切线,切点为AA在第一象限),若过点P的直线m与曲线C交于MN两点,证明:∠AFM=∠AFN
共享时间:2025-03-19 难度:2
[考点]
直线与双曲线的综合,轨迹方程,
[答案]
(1)x2=4y
(2)证明过程见解析.
[解析]
解:(1)根据题意得
y<﹣2时,,平方化简得x2=8(y+1),
y≥﹣2时,,平方化简得x2=4y
根据x2=8(y+1)≥0可知y≥﹣1,不符合题意,舍去,
综上所述,曲线Cx2=4y
(2)证明:设,由于,因此导函数
因此过点A的切线斜率为,又因为kPA
因此,解得t=2,所以A(2,1),

又因为F(0,1),因此AFx轴,要使∠AFM=∠AFN,那么只需kFM+kFN=0,
当直线m斜率不存在时,与抛物线只有1个交点,不符合要求,
设直线mykx﹣1,联立抛物线x2=4y,可得x2﹣4kx+4=0,
根的判别式Δ=16k2﹣16>0,解得k>1或k<﹣1,
Nx2y2),Mx1y1),那么根据韦达定理可得x1+x2=4kx1x2=4,


故∠AFM=∠AFN,此时直线m的斜率取值范围是(﹣∞,﹣1)∪(1,+∞).
[点评]
本题考查了"直线与双曲线的综合,轨迹方程,",属于"易错题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
考点说明
灰色代表去掉的考点,绿色代表未变动的考点,红色代表新增的考点
166332. (2024•西安中学•高二上二月) 彗星是太阳系大家庭里特殊的一族成员,它们以其明亮的尾巴和美丽的外观而闻名,它的运行轨道和行星轨道很不相同,一般为极扁的椭圆形、双曲线或抛物线.它们可以接近太阳,但在靠近太阳时,由于木星、土星等行星引力的微绕造成了轨道参数的偏差,使得它轨道的离心率由小于1变为大于或等于1,这使得少数彗星会出现“逃逸”现象,终生只能接近太阳一次,永不复返.通过演示,现有一颗彗星已经“逃逸”为以太阳为其中一个焦点,离心率为2的运行轨道,且慧星距离太阳的最近距离为1.
(1)若焦点的位置在x轴,求彗星“逃逸”轨道C的标准方程;
(2)设直线lC的一个焦点,且与C交于AB两点,当时,求|AB|的值.
共享时间:2024-12-23 难度:3 相似度:1.67
272970. (2022•西工大附中•高二下二月) 在平面直角坐标系中,动点Pxy)(y>0)到定点M(0,1)的距离比到x轴的距离大1.
(1)求动点P的轨迹C的方程;
(2)过点M的直线l交曲线CAB两点,若|AB|=8,求直线l的方程.
共享时间:2022-06-29 难度:1 相似度:1.5
166739. (2024•交大附中•高二上一月) 设动点M到定点F(3,0)的距离与它到定直线的距离之比为
(1)求点M的轨迹E的方程;
(2)过F的直线与曲线E交右支于PQ两点(Px轴上方),曲线Ex轴左、右交点分别为AB,设直线AP的斜率为k1,直线BQ的斜率为k2,试判断是否为定值,若是定值,求出此值,若不是,请说明理由.
共享时间:2024-10-26 难度:1 相似度:1.5
168782. (2021•西安中学•八模) 在平面直角坐标系xOy中,O为坐标原点,,已知△PMN周长为定值
(1)求动点P的轨迹方程;
(2)过作互相垂直的两条直线l1l2l1与动点P的轨迹交于ABl2与动点P的轨迹交于点CDABCD的中点分别为EF
①证明:直线EF恒过定点,并求出定点坐标.
②求四边形ACBD面积的最小值.
共享时间:2021-06-19 难度:1 相似度:1.5
170597. (2021•西安中学•高二上期末) 在平面直角坐标系xOy中,动点P与两定点A(﹣2,0),B(2,0)连线的斜率之积为﹣,记点P的轨迹为曲线C
(Ⅰ)求曲线C的方程;
(Ⅱ)若过点(﹣,0)的直线l与曲线C交于MN两点,曲线C上是否存在点E使得四边形OMEN为平行四边形?若存在,求直线l的方程,若不存在,说明理由.
共享时间:2021-02-14 难度:1 相似度:1.5
167428. (2023•雁塔二中•高二上一月) 在平面直角坐标系中,已知M1(﹣3,0),M2(3,0),动点Mxy)满足M的轨迹为C
(1)求C的方程:
(2)设直线lC相交于AB两点,且AB的中点N(6,﹣2),求SOABO为坐标原点).
共享时间:2023-10-26 难度:1 相似度:1.5
167149. (2023•西安中学•高二上二月) 已知平面上的动点P到定点F(1,0)的距离比到直线lx=﹣2的距离小1.
(1)求动点P的轨迹E的方程;
(2)过点(2,0)的直线交EAB两点,在x轴上是否存在定点M,使得AB变化时,直线AMBM的斜率之和是0,若存在,求出定点M的坐标,若不存在,写出理由.
共享时间:2023-12-17 难度:1 相似度:1.5
169126. (2020•西工大附中•三模) 已知点F(0,﹣1),直线ly=﹣2,动点P到直线l的距离为d,且,记P的轨迹为曲线C
(1)求C的方程;
(2)过点F的直线mC交于AB两点,判断是否为定值?如果是,求出该定值;如果不是,说明理由.
共享时间:2020-04-03 难度:1 相似度:1.5
169273. (2025•西工大附中•高二上期末) 已知双曲线的右焦点为F(3,0),右顶点为A,直线lx=1与x轴交于点E,且
(1)求C的方程;
(2)若Gl上不同于点E的动点,直线GFy轴于点H,过点GC的两条切线GPGQ,分别交y轴于点PQ,交x轴于点MN
i)证明:|PH|=|QH|;
ii)证明:S表示面积).
共享时间:2025-02-18 难度:1 相似度:1.5
166736. (2024•交大附中•高二上一月) 已知定点A(﹣1,2),B(3,2),动点M到定点AB距离之比为
(1)求动点M的轨迹E的方程;
(2)过点OE的切线,切点为PQ,求PQ所在直线方程.
共享时间:2024-10-26 难度:1 相似度:1.5
172333. (2021•西安中学•高二上期中) 在平面直角坐标系xOy中,O为坐标原点,,已知P为平面内的一个动点,三角形△PF1F2周长为定值
(1)求动点P的轨迹方程;
(2)若P的轨迹上有一点Mx0y0)满足MF1MF2,求y0的值.
共享时间:2021-11-26 难度:1 相似度:1.5
166450. (2024•西工大附中•高三上二月) .已知双曲线C:4x2y2m,点P1(1,1)在C上.按如下方式构造点Pnn≥2);过点Pn﹣1作斜率为1的直线与C的左支交于点Qn﹣1,点Qn﹣1关于y轴的对称点为Pn,记点Pn的坐标为(xnyn).
(1)求点P2P3的坐标;
(2)记an=2xnyn,证明:数列{an}为等比数列;
(3)O为坐标原点,GH分别为线段PnPn+2Pn+1Pn+3的中点,记△OPn+1Pn+2,△OGH的面积分别为S1S2,求的值.
共享时间:2024-12-24 难度:1 相似度:1.5
237658. (2019•西工大附中•高二上期中) 动点P到直线lx=3的距离是它到点A(4,0)的距离的倍;
(1)求动点P的轨迹C方程;
(2)过点M(2,1)能否作一条直线,与(1)中轨迹交于EF两点,且点M为线段EF的中点?若存在,求出直线EF的方程;若不存在,请说明理由.
共享时间:2019-11-17 难度:1 相似度:1.5
170952. (2024•西工大附中•高二上期中) 已知点AB的坐标分别是(0,﹣1),(0,1),直线AMBM相交于点M,且它们的斜率之积为
(1)求动点M的轨迹方程;
(2)若过点的直线l交动点M的轨迹于CD两点,且N为线段CD的中点,求直线l的方程.
共享时间:2024-11-30 难度:1 相似度:1.5
171066. (2024•高新一中•高二上期中) 在平面直角坐标系xOy中,已知PQ两点的坐标分别为,直线PNQN相交于点N,且它们的斜率之积是
(1)求动点N的轨迹方程;
(2)若点N的轨迹与直线ykx+1相交于两个不同的点AB,线段AB的中点为M.若直线OM的斜率为﹣1,求线段AB的长.
共享时间:2024-11-27 难度:1 相似度:1.5

dygzsxyn

2025-03-19

高中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 10
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!