首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

167430. (2023•雁塔二中•高二上一月) 如图,在四棱锥PABCD中,底面ABCD是正方形,PBPD=3PAAD=3,点EF分别为线段PDBC的中点.
(1)求证:EF∥平面ABP
(2)求证:平面AEF⊥平面PCD
(3)求三棱锥CAEF的体积.

共享时间:2023-10-26 难度:3
[考点]
棱柱、棱锥、棱台的体积,直线与平面平行,平面与平面垂直,
[答案]
(1)(2)证明过程见解析;
(3)三棱锥CAEF的体积为
[解析]
证明:(1)如图,取PA的中点G,连接BGEG
∵点EG分别为PDPA的中点,
又∵FBC的中点,四边形ABCD是正方形,∴BFEGBFEG
故四边形EFBG为平行四边形,∴EFBG
BG⊂平面ABPEF⊄平面ABP
EF∥平面ABP
证明:(2)由条件知
∴△PAB和△PAD都是等腰直角三角形,PAABPAAD
又∵ABADAABAD⊂平面ABCD
PA⊥平面ABCD,则PACD
又∵ADCDPAADAPAAD⊂平面PAD
CD⊥平面PAD,得CDAE
EPD的中点,∴AEPD
又∵PDCDDPDCD⊂平面PCD
AE⊥平面PCD,而AE⊂平面AEF
∴平面AEF⊥平面PCD
解:(3)由图可知VCAEFVEACF

即三棱锥CAEF的体积为

[点评]
本题考查了"棱柱、棱锥、棱台的体积,直线与平面平行,平面与平面垂直,",属于"难典题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
170035. (2023•西工大附中•高三上期末) 如图,在四棱锥PABCD中,PA⊥底面正方形ABCDE为侧棱PD的中点,FAB的中点,PAAB=2.
(Ⅰ)求四棱锥PABCD体积;
(Ⅱ)证明:AE∥平面PFC
(Ⅲ)证明:平面PFC⊥平面PCD

共享时间:2023-02-04 难度:3 相似度:2
168318. (2021•西安中学•十模) 如图,已知四边形ABCDBCEG均为直角梯形,ADBCCEBG,且∠BCD=∠BCE,∠ECD=120°,BCCDCE=2AD=2BG=2.
(1)求证:AG∥平面BDE
(2)求三棱锥EBCD的体积.

共享时间:2021-07-10 难度:2 相似度:1.67
170078. (2023•铁一中学•高一下期末) 如图,在棱长为2的正方体ABCDA1B1C1D1中,点EF分别为棱DCD1C1的中点.
(1)求证:A1F∥平面AD1E
(2)求三棱锥A1AED1的体积.

共享时间:2023-07-06 难度:2 相似度:1.67
169169. (2020•高新一中•三模) 如图,四边形ABCD是边长为2的菱形,BFDECG都垂直于平面ABCD,且CG=2BF=2ED=2.
(1)证明:AE∥平面BCF
(2)若∠DAB,求三棱锥DAEF的体积.

共享时间:2020-04-01 难度:2 相似度:1.67
167900. (2024•西安八十九中•三模) 如图,已知AC是圆O的直径,PA⊥平面ABCDEPC的中点,∠DAC=∠AOB
(1)证明:BE∥平面PAD
(2)求证:平面BEO⊥平面PCD

共享时间:2024-04-02 难度:2 相似度:1.67
168665. (2021•西安中学•仿真) 如图,△ABC的外接圆O的直径AB=2,CE垂直于圆O所在的平面,BDCECE=2,BCBD=1.
(Ⅰ)求证:平面AEC⊥平面BCED
(Ⅱ)若DMDE,求三棱锥DACM的体积.

共享时间:2021-06-07 难度:2 相似度:1.67
167739. (2024•西安一中•四模) 如图,几何体ABCDEF为三棱台.
(1)证明:DE∥平面ABF
(2)已知平面ACFD⊥平面DEFACBCACADCF=6,BC=3,DF=12,求三棱台ABCDEF的体积.
参考公式:台体的体积,其中S1S2分别为台体的上底面面积、下底面面积,h为台体的高.

共享时间:2024-04-26 难度:2 相似度:1.67
169811. (2023•西安中学•高一下期末) 如图,四棱锥PABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形,EF分别为ABPC的中点.
(Ⅰ)证明:BF∥平面PDE
(Ⅱ)求三棱锥EBDF的体积.

共享时间:2023-07-12 难度:2 相似度:1.67
167647. (2024•西安中学•一模) 如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.
(Ⅰ)求证:平面BDE⊥平面PAC
(Ⅱ)若PA∥平面BDE,求三棱锥EBCD的体积.

共享时间:2024-03-07 难度:2 相似度:1.67
168758. (2021•西安中学•八模) 如图,边长为2的等边△ABC所在平面与菱形A1ACC1所在平面互相垂直,且BCB1C1BC=2B1C1A1CAC1
(1)求证:A1B1∥平面ABC
(2)求多面体ABCA1B1C1的体积V

共享时间:2021-06-14 难度:2 相似度:1.67
170188. (2023•高新一中•高一下期末) 在斜三棱柱ABCABC′中,△ABC是边长为2的正三角形,侧棱,顶点A′在平面ABC的射影为BC边的中点O
(1)求证:平面BCCB′⊥平面AOA′;
(2)求几何体A′﹣BCCB′的体积.

共享时间:2023-07-11 难度:2 相似度:1.67
168481. (2021•西安中学•三模) 如图所示,ABCD是边长为2的正方形,AE⊥平面BCE,且AE=1.
(Ⅰ)求证:平面ABCD⊥平面ABE
(Ⅱ)线段AD上是否存在一点F,使三棱锥CBEF的高h?若存在,请求出的值;若不存在,请说明理由.

共享时间:2021-04-14 难度:2 相似度:1.67
168034. (2023•西安中学•七模) 如图①,已知△ABC是边长为2的等边三角形,DAB'的中点,DHB'C,如图②,将△B'DH沿边DH翻折至△BDH

(1)在线段BC上是否存在点F,使得AF∥平面BDH?若存在,求的值;若不存在,请说明理由;
(2)若平面BHC与平面BDA所成的二面角的余弦值为,求三棱锥BDCH的体积.
共享时间:2023-06-04 难度:2 相似度:1.67
169696. (2024•西安八十五中•高一下期末) 如图,在棱长为4的正方体ABCDA1B1C1D1中,EAA1的中点,FAE的中点.
(1)求证:CE∥平面BDF
(2)求三棱锥EBDF的体积.

共享时间:2024-07-08 难度:2 相似度:1.67
168010. (2023•师大附中•十模) 如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=8,AB=4,∠BAD=60°,EMN分别是BCBB1A1D的中点.
(Ⅰ)证明:MN∥平面C1DE
(Ⅱ)求三棱锥N﹣C1DE的体积.

共享时间:2023-07-02 难度:2 相似度:1.67

dygzsxyn

2023-10-26

高中数学 | 高二上 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!