首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

232895. (2024•交大附中•高一下二月) 如图,在四棱锥QABCD中,底面ABCD是正方形,侧面QAD是正三角形,侧面QAD⊥底面ABCDMQD的中点.
(1)求证:AM⊥平面QCD
(2)求侧面QBC与底面ABCD所成二面角的余弦值;
(3)在棱QC上是否存在点N使平面BDN⊥平面AMC成立?如果存在,求出,如果不存在,说明理由.

共享时间:2024-06-19 难度:3
[考点]
直线与平面垂直,平面与平面垂直,二面角的平面角及求法,
[答案]
(1)证明见解答;(2);(3)当时,平面BDN⊥平面AMC
[解析]
(1)证明:在正方形ABCD中,CDAD
又侧面QAD⊥底面ABCD,侧面QAD∩底面ABCDADCD⊂平面ABCD
所以CD⊥平面QAD,又AM⊂平面QAD
所以CDAM
因为△QAD是正三角形,MQD的中点,则AMQD
CDQDDCDPD⊂平面QCD
所以AM⊥平面QCD
(2)解:取ADBC的中点分别为EF,连接EFQEQF
EFCDEFCD,所以EFAD
在正△QAD中,QEAD
因为EFQEEEFQE⊂平面QEF
AD⊥平面QEF
在正方形ABCD中,ADBC
BC⊥平面QEF
所以∠QFE是侧面QBC与底面ABCD所成二面角的平面角,
CD⊥平面QADEFCD
EF⊥平面QEF,又PE⊂平面QAD
所以EFQE
设正方形ABCD的边长AD=2a,则EF=2aQEa
所以QFa
则cos∠QFE
故侧面QBC与底面ABCD所成二面角的余弦值为
(3)解:当时,平面BDN⊥平面AMC
由正方形ABCD可得ACBD
CDAD,平面QAD⊥平面ABCD,可得CD⊥平面QAD
即有CDQD
所以QCa
连接ON,在△QAC中,cos∠QCA
ONa
ON2+OC2CN2,可得ONAC
ONBDO,所以AC⊥平面BDN,而AC⊂平面AMC
所以平面BDN⊥平面AMC

[点评]
本题考查了"直线与平面垂直,平面与平面垂直,二面角的平面角及求法,",属于"难典题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
167988. (2023•师大附中•十一模) 如图,ABCD分别是圆台上、下底面的直径,且ABCD,点E(异于DC两点)是下底面圆周上一点,AB=2,圆台的高为
(1)证明:不存在点E使平面AEC⊥平面ADE
(2)若DECE=4,求二面角DAEB的余弦值.

共享时间:2023-07-16 难度:2 相似度:1.67
167670. (2024•西安中学•一模) 如图,在三棱柱ABCA1B1C1中,直线C1B⊥平面ABC,平面AA1 C1C⊥平面BB1C1C
(1)求证:ACBB1
(2)若ACBCBC1=2,在棱A1B1上是否存在一点P,使二面角PBCC1的余弦值为?若存在,求的值;若不存在,请说明理由.

共享时间:2024-03-11 难度:2 相似度:1.67
167349. (2023•长安区一中•高三上二月) 如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AFPC于点FFECD,交PD于点E
(1)证明:CF⊥平面ADF
(2)求二面角DAFE的余弦值.

共享时间:2023-12-15 难度:2 相似度:1.67
166835. (2024•西安八十五中•一模) 如图,在三棱锥PABC中,PA⊥平面ABC
(1)求证:BC⊥平面PAB
(2)求二面角APCB的大小.

共享时间:2024-03-12 难度:2 相似度:1.67
166799. (2024•西安工业大学附中•高二上一月) 如图,在三棱台ABCA1B1C1中,∠BAC=90°,ABAC=4,A1AA1B1=2,侧棱A1A⊥平面ABC,点D是棱CC1的中点.
(1)证明:BB1⊥平面AB1C
(2)求平面BCD与平面ABD的夹角的余弦值.

共享时间:2024-10-20 难度:2 相似度:1.67
167238. (2023•周至六中•高二上一月) 如图,长方体ABCDA1B1C1D1的侧面A1ADD1是正方形.
(1)证明:A1D⊥平面ABD1
(2)若AD=2,AB=4,求二面角B1AD1C的余弦值.

共享时间:2023-10-26 难度:2 相似度:1.67
166367. (2024•长安区一中•高三上四月) 如图,四棱柱ABCDA1B1C1D1的底面ABCD为直角梯形,∠DAB=∠ADC=90°,ABAD=1,CD=2,BD1CD.点MCD1的中点,且CD1=2BM
(1)证明:平面BDM⊥平面BCD1
(2)若钝二面角BDMC的余弦值为﹣,当BD1BD时,求BD1的长.

共享时间:2024-02-12 难度:2 相似度:1.67
22111. (2021•西安中学•二模) 德优题库如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为4的等边三角形,∠A1AB=∠A1AC,D为BC的中点.
(1)证明:BC⊥平面A1AD.
(2)若△A1AD是等边三角形,求二面角D-AA1-C的正弦值.
共享时间:2021-03-18 难度:3 相似度:1.67
167940. (2023•师大附中•三模) 在三棱锥SABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABCMN分别为ABSB的中点.
(1)证明:ACSB
(2)求二面角N﹣CMB正弦值的大小.

共享时间:2023-04-08 难度:2 相似度:1.67
167830. (2024•长安区一中•一模) 如图,已知ABCDCDEF都是直角梯形,ABDCDCEFAB=5,DC=3,EF=1,∠BAD=∠CDE=60°,二面角FDCB的平面角为60°.设MN分别为AEBC的中点.
(Ⅰ)证明:FNAD
(Ⅱ)求直线BM与平面ADE所成角的正弦值.

共享时间:2024-03-04 难度:3 相似度:1.34
167326. (2023•长安区一中•高三上二月) 如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PABD
(2)求证:平面BDE⊥平面PAC
(3)当PA∥平面BDE时,求三棱锥EBCD的体积.

共享时间:2023-12-21 难度:3 相似度:1.34
167694. (2024•西安中学•五模) 如图所示,三棱柱ABCA1B1C1所有棱长都为2,B1BC=60°,OBC中点,DA1CAC1交点.
(1)证明:CD∥平面AOB1
(2)证明:平面BCD⊥平面AB1C1
(3)若直线DB1与平面AOB1所成角的正弦值为,求二面角A1CB1C1的平面角的余弦值.

共享时间:2024-05-09 难度:3 相似度:1.34
167564. (2023•关山中学•高二上一月) 如图,在直三棱柱ABCA1B1C1中,AA1AC=4,AB=3,BC=5,点D是线段BC的中点.请用空间向量的知识解答下列问题:
(1)求证:ABA1C
(2)试求二面角DCA1A的余弦值.

共享时间:2023-10-16 难度:1 相似度:1.33
166857. (2024•西安八十五中•高二上一月) 如图,在直三棱柱ABCA1B1C1中,M为棱AC的中点,ABBCAC=2,AA1
(1)求证:B1C∥平面A1BM
(2)求证:AC1⊥平面A1BM
(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时的值;如果不存在,请说明理由.

共享时间:2024-10-13 难度:1 相似度:1.33
167302. (2023•长安区一中•高三上四月) 如图,直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB=2.
(1)求证:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.

共享时间:2023-02-23 难度:2 相似度:0.83

dygzsxyn

2024-06-19

高中数学 | 高一下 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 3
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!