首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

20186. (2021•西工大附中•五模) 问题提出
(1)如图①,在Rt△ABC中,∠ACB=90°,ACBC.过点C作直线l,再分别过点ABAMlMBNlN.则线段MNAMBN之间的数量关系为___________
(2)如图②,在Rt△ABC中,∠C=90°,AC=30,BC=40,点PAB上,点EF分别是边ACBC上,且∠ABC=∠FPBPEPF.设BPx,求四边形CEPF的面积yx之间的函数关系式;
(3)如图③是一个圆形广场,其中四边形ACBD规划为园林绿化区(四个顶点均在圆上),且要求∠ACB=90°,AC=30米,BC=40米,连接ABCD交于点P.为了更好的美化环境,需要在ACBC边上分别确定点EF,且满足∠ABC=∠FPBPEPF.为了整体布局,计划在四边形CEPF内种植花卉,在四边形ACBD剩余区域种植草坪.已知花卉每平方米的价格是60元,草坪每平方米的价格是90元,从实用角度希望四边形CEPF的面积最大.根据设计要求,求出当四边形CEPF的面积最大时种植花卉和草坪的总费用.

 
共享时间:2021-06-03 难度:5
[考点]
配方法的应用,二次函数的图像,二次函数的性质,二次函数与面积最值问题,全等三角形的判定与性质,相似三角形的判定与性质,四边形的面积最大值问题,圆的综合题,
[答案]
答案详见解答
[解析]
证明:(1)如图①,
AMlMBNlN
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB
∵在△ACM和△CBN中,

∴△ACM≌△CBNAAS),
AMCNCMBN
MNMC+CNAM+BN
(2)∵∠C=90°,AC=30,BC=40,
∴∠A+∠B=90°,AB=50,
PEPF
∴∠FPE=90°,
∴∠FPB+∠EPA=90°,
∵∠B=∠FPB
∴∠EPA=∠A
过点FFMAB于点M,过点EENAB于点N
BMBPxPNAP(50﹣x),
∵∠FBM=∠ABC,∠BMF=∠BCA=90°,
∴△BMF∽△BCA
,即
FMx
同理,,即
EN
S四边形FPECSABCSFBPSEPA×40×30﹣xx•(50﹣x)•
y=﹣+
(3)由(2)知:y=﹣+
∴当x=32时,y有最大值,
即:S四边形FPEC最大值=﹣×322+×32﹣=300,
此时,CPAB
∵∠ACB=90°,
AB是直径,
CPDP,即点CD关于直线AB对称,
S四边形ACBD=2SABC=1200,
∴总费用=60×300+(1200﹣300)×90=99000(元).
[点评]
本题考查了"配方法的应用,二次函数的图像,二次函数的性质,二次函数与面积最值问题,全等三角形的判定与性质,相似三角形的判定与性质,四边形的面积最大值问题,圆的综合题",属于"压轴题",熟悉题型和考点是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
23922. (2022•高新一中•二模) 问题提出
(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为        
问题探究
(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.
问题解决
(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC=60°.设BD的长为x米,△ADC的面积为y平方米.
①求y与x之间的函数关系式;
②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.
德优题库
共享时间:2022-03-14 难度:5 相似度:1.19
61. (2020•北京市•真题) 在平面直角坐标系xOy中,Mx1y1),Nx2y2)为抛物线yax2+bx+ca>0)上任意两点,其中x1x2
(1)若抛物线的对称轴为x=1,当x1x2为何值时,y1y2c
(2)设抛物线的对称轴为xt,若对于x1+x2>3,都有y1y2,求t的取值范围.
共享时间:2020-12-28 难度:3 相似度:1.13
190444. (2025•铁一中学•九上期末) 问题提出
(1)如图1,在直角△ABC中,∠A=30°,⊙I是△ABC的内切圆,若⊙I的半径是1,则△ABC的斜边长为        
问题解决
(2)小方的爸爸是一位翡翠设计师,一位顾客想将一块如图2所示的四边形原石BDFE进行切割设计.顾客首先需要切割出一个玉镯,再根据剩料进行其他设计.由于该原石成色最好的部分在∠B附近区域,所以玉镯要尽可能贴着BE边和BD边,观察到EF和DF的边缘都有杂质和细小裂隙,因此切割线不能经过DF边和EF边.根据原石情况和切割工艺,设计师需要先切割出能覆盖玉镯的三角形,再进行后期精细化打磨.为了最大限度地利用该石材,切割出的△ABC(点A在BD上,点C在BE上),应使得AC尽可能短,同时△ABC的周长和面积尽可能的小.经过测量,∠B=60°,BE=156mm,BD=175mm.根据顾客的需求,手镯的内圈直径为56mm,外圈直径为70mm,即小圆⊙O的直径为56mm,大圆⊙O的直径为70mm.
请你通过计算,帮助小方爸爸说明是否存在BD和BE上的点A和点C使得覆盖大圆⊙O的△ABC周长取得最小时,面积也取得最小值?若存在,请求出△ABC的周长及面积;若不存在,请说明理由.
德优题库
共享时间:2025-02-25 难度:1 相似度:1.13
191789. (2024•远东二中•八下一月) 德优题库如图,在△ABC中,AD⊥BC于点D,E为AC上一点,且BF=AC,DF=DC.
(1)求证:△BDF≌△ADC;
(2)若AC=10,CD=6,求AF的长
共享时间:2024-04-29 难度:1 相似度:1.13
190637. (2025•二十六中•九上期末) 如图,点E是△ABC的边BC上的点,AB=18,AE=15.若∠BAE=∠CAD,求证:∠C=∠D
共享时间:2025-03-01 难度:1 相似度:1.13
190615. (2025•交大附中•八上期末) 德优题库如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.
(1)求证:△ABE≌△ACD;
(2)若AE=6,CD=8,求BD的长.
共享时间:2025-02-22 难度:1 相似度:1.13
190586. (2025•交大附中•九上期末) 德优题库如图所示,小明绘制了一个安全用电的标识,点A、F、C、D在同一条直线上,且AF=DC,BC=EF,BC∥EF.若∠B=84°,求∠E的度数.
共享时间:2025-02-14 难度:1 相似度:1.13
190544. (2025•西安三中•九上期末) 如图1,在扇形AOB中,点O为扇形所在圆的圆心,,∠AOB=120°,点C上一点,则△ABC面积的最大值为                
(2)如图2,在四边形ABCD中,ABAD,∠BAD=∠BCD=90°,连接AC.若AC=6,求四边形ABCD的面积;
(3)如图3,菱形ABCD是一个广场示意图,其中菱形边长AB为120米,∠A=60°,市政部门准备在这块菱形广场中修建一个四边形景观区DEBF,这块四边形区域需要满足BEBF,∠EBF=60°,∠EDF=75°,则这块四边形区域DEBF的面积是否存在最小值?若存在,请计算出面积的最小值及此时线段BF的长,若不存在,请说明理由.(结果保留根号)

 
共享时间:2025-02-07 难度:1 相似度:1.13
190520. (2025•碑林区•九上期末) 【问题提出】
(1)如图1,在△ABC中,点DE分别在边ABAC上,连接DEDEBCAD=2DB.若DE=4,则BC的长为      
【问题深入】
(2)如图2,在扇形OAB中,C上的一动点,连接ACBC,∠AOB=120°,OA=2,求四边形OACB的面积的最大值.
【问题解决】
(3)为进一步促进西安市文化和旅游高质量发展,推动全市文明旅游工作创建,某地拟建一个四边形休闲广场ABCD,其大致示意图如图3所示,ADBCBC=120米,在点E处设立一个自动售货机,EBC的中点,连接AEBDAEBD交于点M,连接CM,沿CM修建一条石子小路(宽度不计),将△MBE和△MDA进行绿化.根据设计要求,BM=2DM,tan∠CME.为倡导绿色新风尚,现要使绿化的面积尽可能的大,请问△MBE和△MDA的面积之和是否存在最大值?若存在,请求出△MBE和△MDA的面积之和的最大值;若不存在,请说明理由.

 
共享时间:2025-02-22 难度:1 相似度:1.13
190515. (2025•碑林区•九上期末) 德优题库如图,抛物线y=-x2+mx+3经过点M(-1,3).
(1)求m的值,并求出此抛物线的顶点坐标.
(2)当-3≤x≤0时,y的取值范围是        
共享时间:2025-02-22 难度:1 相似度:1.13
190391. (2025•西工大附中•八上期末) 德优题库已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.
共享时间:2025-02-24 难度:1 相似度:1.13
190437. (2025•铁一中学•九上期末) 在四边形ABCD中,对角线AC与BD相交于E,∠CAB=∠CBD,已知AB=4,AC=6,BC=5,BD=5.5,求DE的长.
共享时间:2025-02-25 难度:1 相似度:1.13
191861. (2024•经开一校(原经发)•八下一月) 德优题库如图,在△ABC和△DCB中,∠BAC=∠CDB=90°,AB=DC,AC与BD相交于点O,连接AD.
求证:点O在线段AD的垂直平分线上.
共享时间:2024-04-13 难度:1 相似度:1.13
190299. (2025•高新区•九上期末) 德优题库问题提出:
(1)如图1,在△ABO中,OA=OB=4,∠AOB=120°,⊙O半径为1,点P是⊙O上的动点.则P到AB的最小值为        
问题探究:
(2)如图2,在正方形ABCD中,找出所有的点P,使得∠BPC=60°;
(3)问题解决:
如图3,有一个矩形水池ABCD,已知BC=30m,AB=20m.设计者想把水池分为四部分,分别是三角形AED,三角形CED,三角形BEC,三角形AEB.满足BF⊥AG,BF=2EF,点E在AG上,G为BC上的任意一点.若三角形CED区域养鱼,其他区域养虾.已知养鱼每平方米1000元,养虾每平方米800元.请问花费的最少费用是多少?
共享时间:2025-02-02 难度:1 相似度:1.13
190107. (2025•未央区•九上期末) 德优题库如图,在△ABC中,∠C=∠ADE,AB=3,AD=2,AC=8,求AE的长.
共享时间:2025-02-07 难度:1 相似度:1.13

dcyx2021

2021-06-03

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 678
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!