首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

23874. (2020•益新中学•九上期末) 问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?
勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.
受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.
(1)你认为勤奋小组同学的作法正确吗?请说明理由;
(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)
解决问题:
(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.德优题库
共享时间:2021-03-28 难度:5
[考点]
相似三角形的判定与性质,矩形的判定与性质,正方形的判定与性质,四边形综合题,
[答案]
(1)正确;
(2)图形见解析;
(3)18或
[解析]
解:(1)正确.
理由:∵EFBCBCGD
∴∠FED=∠EDG=90°,
FGBC
∴∠EFG=180°﹣∠FED=90°,
∴四边形DEFG是矩形,
∵四边形HIJK是正方形,
IJKJKJBC

GFEF
∴四边形DEFG为正方形;
(2)如图1和图2,矩形DEFG为所作.

(3)如图3,作△ABC的高AM,交GF于点N

∵△ABC的面积=BCAM×12×AM=36,
AM=6,
DE=2DG
ANx,则MN=6﹣xDGMN=6﹣xDEGF=2(6﹣x)=12﹣2x
GFBC
∴△AGF∽△ABC


解得x=3,
DG=6﹣x=3,
DE=2DG=6,
∴矩形DEFG的面积=6×3=18,
同理,在矩形DEFG中,若DG=2DE,可求出x
DG=6﹣xDE
∴矩形DEFG的面积=
故矩形DEFG的面积为18或
[点评]
本题考查了"相似三角形的判定与性质,矩形的判定与性质,正方形的判定与性质,四边形综合题",属于"压轴题",熟悉考点是解题的关键。解题时注意数形结合思想与方程思想的应用,注意准确作出辅助线是解此题的关键.
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
19254. (2016•西工大附中•模拟) 问题探究:三角形的内接四边形指顶点在三角形各边上的四边形.
(1)如图1,△ABC中,ABAC,正方形MNFE的顶点MEBC上,顶点NAB上,请以点B为位似中心,作△ABC的内接正方形.(不写作法).
(2)如图2,△ABC中,BC=12,∠B=45°,ADBC于点DAD=8,请以点D为位似中心,作△ABC的内接正方形,并求出所作正方形的面积(不写作法).
问题解决
(3)如图3,将(2)中的△ABC翻折得到四边形ABEC,对角线AEBC相交于点D,请以点D为位似中心作正方形MNPQ,使得点MNPQ在四边形ABEC的各边上.
要求:①写出作法,证明四边形MNPQ是正方形;
②求出正方形MNPQ的面积.
共享时间:2016-06-06 难度:5 相似度:1.5
811. (2015•陕西省•真题) 如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为      
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
共享时间:2015-08-18 难度:5 相似度:1.25
1052. (2019•陕西省•真题) 问题提出:
1)如图1,已知△ABC,试确定一点D,使得以ABCD为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
2)如图2,在矩形ABCD中,AB4BC10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC90°,求满足条件的点P到点A的距离;
问题解决:
3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
共享时间:2019-07-05 难度:5 相似度:1.25
882. (2013•陕西省•真题) 问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

 
共享时间:2013-11-18 难度:3 相似度:1.25
6320. (2017•西工大附中•模拟) 问题发现.
(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点DAB边上任意一点,则CD的最小值为   
(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BDBC上,求CM+MN的最小值.
(3)如图③,矩形ABCD中,AB=3,BC=4,点EAB边上一点,且AE=2,点FBC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AGCG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.
共享时间:2017-06-26 难度:5 相似度:1.18
3113. (2019•滨河中学•模拟) 如图,已知正方形ABCDP是对角线AC上任意一点,PMADPNAB,垂足分别为点MNPEPBAD于点E
(1)求证:四边形MANP是正方形;
(2)求证:EMBN
                                                                                                                                      
共享时间:2019-06-03 难度:3 相似度:1.17
6345. (2017•师大附中•模拟) (1)如图①,已知BD为矩形ABCD的对角线,请作出点A到BD最短距离.
(2)如图②,在四边形ABCD中,AD∥BC,AD⊥CD,矩形EMQG为△ABC的一个内接矩形,EG交DB于点F,过点F作AN⊥BC于点N,延长GE交DC于点P,则四边形PCNF的面积与四边形EMQG的面积有什么关系?请说明理由.
(3)如图③,在△ABC,AC=4,BC=6,∠ACB=30°,矩形EMQG是△ABC的一个内接矩形(点M、Q在边BC上,点E、G分别在边AC、AB上).请在图③中画出对角线MG最短的矩形EMQG,请说明理由,并求出此时MG的长.
德优题库
共享时间:2017-06-08 难度:5 相似度:0.83
350. (2012•红星高中•真题) 如图,在▱ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.
(1)求证:AB=AF;
(2)当AB=3,BC=5时,求的值.
共享时间:2020-07-03 难度:4 相似度:0.75
1050. (2019•陕西省•真题) 如图,ACO的直径,ABO的一条弦,APO的切线.作BMAB并与AP交于点M,延长MBAC于点E,交O于点D,连接AD
1)求证:ABBE
2)若O的半径R5AB6,求AD的长.
                                                                                                                              
共享时间:2019-07-05 难度:5 相似度:0.75
6520. (2017•高新一中•模拟) 观察思考:如图,AB是直线a上的两个定点,点CD在直线b上运动(点C在点D的左侧),ABCD=4cm.已知abab间的距离为cm,连接ACBDBC,把△ABC沿BC折叠得△A1BC
(1)当A1D两点重合时,则 AC   cm
(2)当A1D两点不重合时,
①连接A1D,探究A1DBC的位置关系,并说明理由.
②若以A1CBD为顶点的四边形是矩形,画出示意图并直接写出AC的长.
共享时间:2017-06-20 难度:5 相似度:0.75
846. (2014•陕西省•真题) 如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.
(1)求证:AD平分∠BAC;
(2)求AC的长.

 
共享时间:2014-09-18 难度:2 相似度:0.75
6243. (2016•铁一中学•真题) )如图,AB是半圆O的直径,点PBA延长线上一点,PC是⊙O的切线,切点为C,过点BBDPCPC的延长线于点D,连接BC.求证:
(1)∠PBC=∠CBD
(2)BC2ABBD
                                                                                                                           
共享时间:2017-07-03 难度:3 相似度:0.75
473. (2017•陕西省•副题) 如图,△ABCO的内接三角形,∠ABC的角平分线交O于点D,过点DDEACBC的延长线于点E
1)求证:DEO的切线;
2)若DEAC,求∠ACB的大小.
共享时间:2017-07-10 难度:5 相似度:0.75
807. (2015•陕西省•真题) 如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.
(1)求证:∠BAD=∠E;
(2)若⊙O的半径为5,AC=8,求BE的长.
                                                                                                                             
共享时间:2015-08-18 难度:3 相似度:0.58
782. (2019•陕西省•暑假) 问题提出
1)如图,已知直线ll外一点A,试在直线l上确定BC两点,使∠BAC90°,并画出这个RtABC
问题探究
2)如图O是边长为28的正方形ABCD的对称中心,MBC边上的中点,连接OM.试在正方形ABCD的边上确定点N,使线段ONOM将正方形ABCD分割成面积之比为16的两部分.求点N到点M的距离.
问题解决
3)如图,有一个矩形花园ABCDAB30mBC40m.根据设计要求,点EF在对角线BD上,且∠EAF60°,并在四边形区域AECF内种植一种红色花卉,在矩形内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植至少需费用多少元?(结果保留整数.参考数据:1.41.7
共享时间:2019-07-10 难度:5 相似度:0.58

yxzx2021

2021-03-28

初中数学 | 九年级上 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 556
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!