首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

19254. (2016•西工大附中•模拟) 问题探究:三角形的内接四边形指顶点在三角形各边上的四边形.
(1)如图1,△ABC中,ABAC,正方形MNFE的顶点MEBC上,顶点NAB上,请以点B为位似中心,作△ABC的内接正方形.(不写作法).
(2)如图2,△ABC中,BC=12,∠B=45°,ADBC于点DAD=8,请以点D为位似中心,作△ABC的内接正方形,并求出所作正方形的面积(不写作法).
问题解决
(3)如图3,将(2)中的△ABC翻折得到四边形ABEC,对角线AEBC相交于点D,请以点D为位似中心作正方形MNPQ,使得点MNPQ在四边形ABEC的各边上.
要求:①写出作法,证明四边形MNPQ是正方形;
②求出正方形MNPQ的面积.
共享时间:2016-06-06 难度:5
[考点]
相似三角形的判定与性质,位似变换,正方形的判定与性质,四边形综合题,
[答案]
答案详见解答
[解析]
解:(1)如图1中,请以点B为位似中心,△ABC的内接正方形MNFE′如图所示.

(2)如图2中,以点D为位似中心,△ABC的内接正方形MNEF′如图所示.

正方形MNFE的顶点MFBC上,且DM=2DF.延长DEACE′,作EF′⊥BCF′,延长DNABN′,作NM′⊥BCM′,正方形MNEF′即为所求.
设正方形MNEF′的边长为x
NE′∥BC
∴△ANE′∽△ABC

x
∴正方形MNEF′的面积为

(3)如图3中,

作正方形MNPQ′,使得MN′∥ADMNBCRPQ′交BCT,且RN′=RM′,RD=2DT,延长DP′交ACP,延长DN′交ABN,延长DM′交BEM,延长DQ′交ECQ,连接MNNPPQQM,则四边形MNPQ即为所求.设PQBCGMNBCH
由题意ABAD=8,DC=4,
AD=2DC
∵△BCE是由△ABC翻折得到,RN′=RM′,TP′=TQ′,
∴根据对称性可知,PQAEMN
PTDT=3:2,
PGDG=3:2,
PGGCADDC=2:1,
APPCDGGC=4:3,同理可证ANBN=4:3,
ANBNAPPC
PNBC,同理可证MQBC
∴四边形MNPQ是平行四边形,易知∠MNP=90°,
∴四边形MNPQ是矩形,
PN′∥PNPQ′∥PQ
PN′:PNDP′:DPPQ′:PQ
PN′=PQ′,
PNPQ
∴四边形MNPQ是正方形.设边长为a
PNBC
∴△ANP∽△ABC

a
∴正方形MNEF′的面积为
 
[点评]
本题考查了"正方形的判定与性质   四边形综合题   相似三角形的判定与性   位似变换   ",属于"压轴题",熟悉知识点是解题的关键
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
23874. (2020•益新中学•九上期末) 问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?
勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.
受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.
(1)你认为勤奋小组同学的作法正确吗?请说明理由;
(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)
解决问题:
(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.德优题库
共享时间:2021-03-28 难度:5 相似度:1.5
199189. (2022•交大附中•八下期中) (1)如图1,已知锐角△ABC的边BC=3,SABC=6,点M为△ABC内一点,过点MMDBCBC于点D,连接AM,则AM+MD的最小值为      
(2)如图2,点P是正方形ABCD内一点,PA=2,PBPC=4.求∠APB的度数.
(3)如图3,在长方形ABCD中,其中AB=600,AD=800,点P是长方形内一动点,且SPAD=2SPBC,点Q为△ADP内的任意﹣点,是否存在一点P和一点Q.使得AQ+DQ+PQ有最小值?若存在,请求出此时PQ的长度,若不存在,请说明理由.

共享时间:2022-05-14 难度:1 相似度:1.25
185374. (2024•高新一中•七下期中) 已知△ABC中,AB=AC,∠BAC=90°,直线l经过点A,作BD⊥l于D,CE⊥l于E.
德优题库
(1)当直线l在∠BAC外部时(图(a)),求证:BD+CE=DE;
(2)当直线l在∠BAC内部时(图(b)),猜想线段BD,CE与DE之间又有怎样的关系.证明你的结论;
(3)在(2)的条件下,连接BE,若BD=6,CE=4,求四边形ABEC的面积.
共享时间:2024-05-18 难度:1 相似度:1.25
181160. (2023•爱知中学•月考) 【问题探究】
(1)如图1,在矩形ABCD中,AB=4,点E、F分别为边AD、BC上的点,且AE=1,BF=2,P为边AB上一动点,连接EP、PF,则EP+PF的最小值为        
(2)如图2,在矩形ABCD中,AB=4,BC=8,点E、F分别在边AD和BC上,连接AC,EF⊥AC于M,求EF的长.
【问题解决】
(3)某市进行绿化改造,美化生态环境.如图3,将一块四边形的空地ABCD改造成了供市民休闲锻炼的公园.已知:在四边形ABCD中,AB∥CD,∠C=90°,tan∠CDA=2,BC=60米,AB=110米,在公园的AD边上有一个出口M,经测量MD=2MA,为了方便市民,现计划在公园的AB边和CD边上分别建一个休息亭F和E,然后铺设观景道BE、EF、FM,并且EF⊥BM,若要使这三条观景道的距离和最小(即BE+EF+FM最小),请求出休息亭F距离点A多远?并求出BE+EF+FM的最小值.(小路面积忽略不计,结果保留根号)
德优题库
共享时间:2022-12-01 难度:1 相似度:1.25
181186. (2023•爱知中学•九上四月) (1)如图1,∠ABC=90°,分别过AC两点作经过点B的直线的垂线,垂足分别为EFAE=4,BE=2,BF=3,求CF的长度为                   
(2)如图2,在矩形ABCD中,AB=4,BC=10,点EFM分别在ABBCAD上,∠EMF=90°,AM=2,当BE+BF=9时,求四边形MEBF的面积.
(3)如图3,在△ABC中,∠ACB=90°,AC=15,BC=20,点EF分别在边ABBC上,∠CEF=α且,若BF=8,求BE的长度.
共享时间:2023-01-10 难度:1 相似度:1.25
181324. (2024•未央区•七下二月) 问题提出
(1)如图1,在△ABC中,已知BC=6,P为边BC上一动点,S△ABC=6,则AP的最小值为        
问题探究
(2)小哲同学喜欢探究生活中的数学问题,学习完轴对称的知识以后,他将一张正方形纸片沿着对角线对折,根据轴对称图形的定义来判断,得到结论:正方形是轴对称图形,对角线所在的直线是正方形的一条对称轴.他尝试利用这一结论解决问题;如图2,正方形ABCD的边长为4,E为DC的中点,P为对角线BD上的动点,F为BC上的动点,请求出PE+PF的最小值.请你解决小哲提出的问题.
问题解决
(3)如图3,这是某公园的一块四边形市民健身场地ABCD,公园管理部门在△ACD内规划设置体育锻炼区域,在△ABC内设置合唱团训练区域,在BD处修建养生小路,要求BD尽可能的长,其中AB=10m,BC=16m,AD=AC,∠CAD=60°.已知铺设小路 BD的费用是每米1600元,请你计算铺设小路的费用最多需要花费多少钱.
德优题库
共享时间:2024-06-18 难度:1 相似度:1.25
181373. (2024•经开一中•八下一月) 德优题库新定义:有一组对角相等而另一组对角不相等的四边形叫做“等对角四边形”.
(1)如图1,若四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=65°,∠B=80°,则∠C的度数为        °.
(2)如图2,“等对角四边形”ABCD,已知:∠ABC=∠ADC,BC=CD,你认为AB=AD成立吗?若成立,请你证明此结论,若不成立,请说明理由.
(3)在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=7,AD=5.求对角线AC的长.
共享时间:2024-04-18 难度:1 相似度:1.25
181469. (2024•铁一中学•七下二月) 【初步探究】
(1)如图1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接BD、CE.
①由题中条件判断BD与CE的数量关系:BD        CE;
②BD与EC是否存在特殊的位置关系?请你证明.
【灵活运用】
(2)将△ADE绕点A旋转至如图2所示位置,连接BD、CE.在(1)中的结论下,若AB=3,AE=5,四边形BCDE的面积存在最大值吗?若存在,求出这个值;若不存在,说明理由.
德优题库
共享时间:2024-06-19 难度:1 相似度:1.25
181494. (2024•铁一中学•八下一月) 综合与实践
(1)如图①,在四边形ABCD中,AB=BC=CD=DA,∠B=∠D=60°,连接AC.若点E、F分别在边BC,CD上,且BE=CF.
①求证:△AEF是等边三角形;
②若AC=6,求四边形AECF的面积;
(2)某小区有一块四边形空地,如图②,经测量:AB=AD=8m,AC=10m,∠BCD=120°,∠BAD=60°,物业决定在此规划花园,以△ABD和△BCD为大致轮廓种植月季和薰衣草,如图③,为了观赏方便,物业决定过点E规划三条路线,分别为EC、EF、EG(宽度忽略不计),其中CE⊥BD,EF⊥AB,EG⊥AD,求三条路线的距离之和.
德优题库
共享时间:2024-04-20 难度:1 相似度:1.25
181543. (2023•曲江一中•九上一月) 问题提出
(1)如图1,在Rt△ABC中,∠ACB=90°.请在△ABC内画一个正方形,使得这个正方形一个内角为∠C,其余顶点落在△ABC的边上;
问题探究
(2)如图,△ABC为一块锐角三角形木板,其中BC=10,SABC=25.
如图2,若要在△ABC中做出一个正方形,使正方形边落在BC上,另外两个顶点分别落在ABAC上,则该正方形的面积为                     
如图3,若要在△ABC中做出一个平行四边形,使平行四边形一边EF落在BC上,另两顶点落在ABAC上,请求出满足条件的平行四边形面积的最大值.
问题解决
(3)如图4有一四边形ABCDACBD交于OAC=10,BD=20,∠AOB=60°,现要在ABCD中截出平行四边形EFGH,使得平行四边形一边EFBD平行,四个顶点EFGH落在ABCD的四边上,当SEFGHS四边形ABCDEF                    
共享时间:2023-10-14 难度:1 相似度:1.25
181568. (2024•曲江一中•八下二月) 【问题提出】
(1)如图1,点D是△ABC边BC的中点,则S△ABD       S△BCD(填“>、<、=”,下同).
如图2,直线m∥n,A、B为直线n上两点,C、P为直线m上两点,则S△ABC=       S△ABF
【问题探究】
(2)如图3,点D是△ABC边AC上一定点,使用三角板在BC上作出点E,使得线段DE将△ABC分成面积相等的两部分,并说明理由.
【问题解决】
(3)如图4,四边形ABCD是铁一曲江悦耕园的一块不规则空地,为了丰富悦耕园的农作物,“一米菜园”选修课的同学们决定在这块地里种植两种农作物,打算过点C修一条笔直的通道,以便同学们打理农作物,要求通道两侧种植农作物的面积相等.经测量AB=6米,AD=30米,∠A=60°,∠ABC=150°,∠BCD=120°,若将通道记为CF,请你画出通道CF,并求出通道CF的长.
德优题库
共享时间:2024-06-21 难度:1 相似度:1.25
185129. (2025•铁一中学•八下期中) (1)阅读材料:如图①,在Rt△ABC中,∠ACB=90°,AC=2,∠ABC=30°,△ACE是等边三角形,M为△ABC内任意一点,连接CM,将CM绕点C逆时针旋转60°得到CN,连接EN、AM、BM.
①△CMN的形状是        
②AM+BM+CM是否存在最小值,若存在,求出这个最小值,若不存在,请说明理由;
(2)如图②,城市规划部门准备在一块边长40米的正方形空地ABCD建设口袋公园,四个顶点A、B、C、D为公园入口,公园内有两个凉亭E、F,为方便市民散步,需修建健身步道连接AE、BE、EF、DF、CF.为节约建设成本,应将E、F修建在何处可使修建步道之和最短?最短距离为多少?
德优题库
共享时间:2025-05-10 难度:1 相似度:1.25
185226. (2025•西工大附中•八下期中) 问题发现
(1)如图①,已知边长为4的等边△ABCAE是△ABC的中线,点DAC的中点,点PAE上一动点,则PC+PD的最小值为        
问题探究
(2)如图②,已知在四边形ABCD中,ABAD,∠BAD=90°,∠BCD=135°,连接AC,且CD=20,AC=26,求BC的长;
问题解决
(3)某公园规划一个四边形花园ABCD,如图③,其面积为平方米,设计一条观赏路BD将花园分成两部分,分别种植不同的花卉,根据设计要求,∠ABC=60°,BD平分∠ABC,由于地形需要,计划在其四周围上护栏,公园已有长度为(80﹣60)米的护栏恰好全部用于ABBC处,ADCD两处需购买新的护栏,若护栏20元/米,为了节约成本,求公园购买护栏的最少费用.(观赏路的宽度和护栏的厚度忽略不计)

共享时间:2025-05-18 难度:1 相似度:1.25
185423. (2023•爱知中学•八上期中) 在Rt△DEF中,DEDF,∠EDF=90°,点ED分别在长方形ABCO的边BCCO上.

(1)如图1,当点FOA上,且CE=3,OF=1时,则EF        
(2)如图2,若ECCO,点D为线段CO上一动点(不包括端点),连接OF,求∠AOF的度数;
(3)如图3,若矩形ABCO中,OA=5,OC=4,在(2)的基础上,当BF取值最小时,求点D的坐标.
共享时间:2023-11-17 难度:1 相似度:1.25
185399. (2024•高新一中•八下期中) 我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形.
(1)如图1,△ABC是等边三角形,在BC上任取一点D(BC除外),连接AD,我们把△ABD绕点A逆时针旋转60°,则AB与AC重合,点D的对应点E.请根据给出的定义判断,四边形ADCE        (选择是或不是)等补四边形.
(2)如图2,等补四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,若S四边形ABCD=32,求BD的长.
(3)如图3,在某运动公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=100米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC,CD上分别有景点E、F,且AE⊥AD,∠DAF=15°,现要在E、F之间修一条笔直的道路,求出这条道路EF的长.
德优题库
共享时间:2024-05-24 难度:1 相似度:1.25

xgd513

2016-06-06

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 692
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!