首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

230681. (2025•西安三中•四模) 在三棱锥PABC中,平面PAC⊥平面ABCPAPCPAPCACBCBC=2AC=4,MAB的中点,NPB上一点,
(1)求证:ACPM
(2)求直线CN与平面PAB所成角的正弦值.

共享时间:2025-04-30 难度:2
[考点]
直线与平面垂直,空间向量法求解直线与平面所成的角,
[答案]
(1)证明见解析;(2)
[解析]
解:(1)证明:取DAC中点,连接DMPD
因为DM分别为ACAB的中点,则DMBC
因为ACBC,则DMAC
因为PAPCDAC的中点,所以ACPD
因为PDDMDPDDM⊂平面PDM
所以AC⊥平面PDM
因为PM⊂平面PDM,故ACPM
(2)因为平面PAC⊥平面ABC,平面PAC∩平面ABCACPDACPD⊂平面PAC
所以PD⊥平面ABC
又因为ACDM,以点D为坐标原点,DADMDP所在直线分别为xyz轴建立如下图所示的空间直角坐标系,

A(1,0,0)、B(﹣1,4,0)、C(﹣1,0,0)、P(0,0,1)、M(0,2,0),

设平面PAB的一个法向量为
,则
x=2,则y=1,z=2,则
因为,则点NPB的中点,即点
又有C(﹣1,0,0),则
设直线CN与平面PAB所成角为α,

所以直线CN与平面PAB所成角的正弦值
[点评]
本题考查了"直线与平面垂直,空间向量法求解直线与平面所成的角,",属于"必考题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
166274. (2024•师大附中•高二上一月) 如图,在直三棱柱ABCA1B1C1中,△ABC为边长为2的正三角形,AA1=3,DAC中点,点E在棱CC1上,且CE=λCC1,0<λ<1.
(1)当时,求证A1E⊥平面BDE
(2)设O1为底面A1B1C1的中心,求直线CO1与平面BDE所成角的正弦值的最大值,并求取得最大值时λ的值.

共享时间:2024-10-30 难度:2 相似度:2
166757. (2024•建大附中•一模) 如图,在九面体ABCDEFGH中,平面AGF⊥平面ABCDEF,平面AFG∥平面HCDAB=6,底面ABCDEF为正六边形.
(1)证明:GH∥平面ABCDEF
(2)证明:GH⊥平面AFG
(3)求GE与平面ABG所成角的正弦值.

共享时间:2024-03-13 难度:3 相似度:1.67
261. (2014•陕西省•真题) 四面体ABCD及其三视图如图所示,平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH
)求四面体ABCD的体积;
)证明:四边形EFGH是矩形.
                                                                                                               
 
共享时间:2014-07-07 难度:3 相似度:1
169008. (2020•西安中学•一模) 如图,在三棱锥PABC中,PAPBAB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABCDE分别为ABAC中点.
(1)求证:ABPE
(2)求二面角APBE的大小.

共享时间:2020-03-12 难度:2 相似度:1
168573. (2021•西安中学•九模) .如图,在三棱柱ABCA1B1C1中,点C在平面A1B1C1内的射影点为A1B1的中点O,且ACBCABAA1=1:1::2.
(1)求证:AB⊥平面OCC1
(2)若CO,求点C到平面ABO的距离.

共享时间:2021-06-30 难度:2 相似度:1
168619. (2021•西安中学•二模) 如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是半圆弧上异于CD的点.
(Ⅰ)证明:直线DM⊥平面BMC
(Ⅱ)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.

共享时间:2021-03-17 难度:2 相似度:1
168641. (2021•西安中学•二模) 如图,在三棱柱ABCA1B1C1中,底面ABC是边长为4的等边三角形,∠A1AB=∠A1ACDBC的中点.
(1)证明:BC⊥平面A1AD
(2)若△A1AD是等边三角形,求二面角DAA1C的正弦值.

共享时间:2021-03-26 难度:2 相似度:1
168711. (2021•西安中学•仿真) 如图1,在直角梯形ABCD中,ABCDABAD,且ABAD,现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,MED的中点,如图2.

(1)求证:AM∥平面BEC
(2)求证:BC⊥平面BDE
(3)求直线DC与平面BEC所成角的正弦值.
共享时间:2021-06-05 难度:2 相似度:1
168734. (2021•西安中学•仿真) 如图1,在直角梯形ABCD中,ABCDABAD,且ABAD,现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,MED的中点,如图2.

(1)求证:AM∥平面BEC
(2)求证:BC⊥平面BDE
(3)求直线DC与平面BEC所成角的正弦值.
共享时间:2021-06-10 难度:2 相似度:1
168779. (2021•西安中学•八模) 如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDABAA1
(1)证明:A1C⊥平面BB1D1D
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

共享时间:2021-06-19 难度:2 相似度:1
168918. (2021•高陵一中•二模) 如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是半圆弧上异于CD的点.
(Ⅰ)证明:直线DM⊥平面BMC
(Ⅱ)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.

共享时间:2021-03-23 难度:2 相似度:1
168940. (2021•高陵一中•二模) 如图,在三棱柱ABCA1B1C1中,底面ABC是边长为4的等边三角形,∠A1AB=∠A1ACDBC的中点.
(1)证明:BC⊥平面A1AD
(2)若△A1AD是等边三角形,求二面角DAA1C的正弦值.

共享时间:2021-03-30 难度:2 相似度:1
169123. (2020•西工大附中•三模) 已知一等腰梯形ABCD,如图(1)所示,ABCDAB=2AD=2CD=2,沿AC将△ACD折起,使得平面ABC⊥平面ACD,如图(2)所示,连接BD,得三棱锥DABC
(1)求证:图(2)中BC⊥平面ACD
(2)求图(2)中的二面角ABDC的正弦值.

共享时间:2020-04-03 难度:2 相似度:1
169077. (2020•西工大附中•三模) 如图,在多面体ABCDEF中,ABCDADCDCD=2AB=2AD,四边形ADEF是矩形,平面BDE⊥平面ABCDAF=λAD
(1)证明:DE⊥平面ABCD
(2)若二面角BCFD的正弦值为,求λ的值.

共享时间:2020-04-06 难度:2 相似度:1
168436. (2021•西安中学•七模) 如图,在三棱锥PABC中,PAPBACBCPCAB=2,点DE分别为ABPC的中点.
(1)证明:PD⊥平面ABC
(2)设点F在线段BC上,且,若三棱锥PAEF的体积为,求实数λ的值.

共享时间:2021-06-06 难度:2 相似度:1

dygzsxyn

2025-04-30

高中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 3
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!