首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

271763. (2022•西工大附中•高三上二月) 2021年,为降低疫情传播风险,保障经济社会良好运行,各地区鼓励外来务工人员就地过节、过年.某市统计了该市4个地区的外来务工人员数与就地过年的人员数,得到如下的表格:
  A B C D
外来务工人员数x/万人 3 4 5 6
就地过年的人员数y/万人 2.5 3 4 4.5
(1)已知可用线性回归模型拟合yx的关系,求y关于x的线性回归方程
(2)假设该市政府对外来务工人员中选择就地过年的人每人发放1000元补贴.
(ⅰ)若该市E区有2万名外来务工人员,根据(1)的结论估计该市政府需要给E区选择就地过年的人员发放的补贴总金额;
(ⅱ)若A区的外来务工人员中甲、乙两人选择就地过年的概率分别为p,该市政府对甲、乙两人的补贴总金额的期望不超过1500元,求p的取值范围.
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为
共享时间:2022-12-16 难度:2
[考点]
离散型随机变量的均值(数学期望),经验回归方程与经验回归直线,
[答案]
(1)
(2)(ⅰ)1750(万元).
(ⅱ)
[解析]
解:(1)

所以,,则
y关于x的线性回归方程为
(2)(ⅰ)将x=2代入,得
故估计该市政府需要给E区选择就地过年的人员发放的补贴总金额为1.75×1000=1750(万元).
(ⅱ)设甲、乙两人中选择就地过年的人数为X,则X的所有可能取值为0,1,2,
PX=0)=(1﹣p)(2﹣2p)=2p2﹣4p+2,
PX=1)=(1﹣p)(2p﹣1)+p(2﹣2p)=﹣4p2+5p﹣1,
PX=2)=p(2p﹣1)=2p2p
所以X的分布列为:
X 0 1 2
P 2p2﹣4p+2 ﹣4p2+5p﹣1 2p2p
所以,EX)=0×(2p2﹣4p+2)+1×(﹣4p2+5p﹣1)+2×(2p2p)=3p﹣1,
所以,E(1000X)=1000(3p﹣1)由1000(3p﹣1)≤1500,得,又
所以.所以p的取值范围为
[点评]
本题考查了"离散型随机变量的均值(数学期望),经验回归方程与经验回归直线,",属于"必考题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
考点说明
灰色代表去掉的考点,绿色代表未变动的考点,红色代表新增的考点
232024. (2023•西咸新区•高三上一月) 大学生刘铭去某工厂实习,实习结束时从自己制作的某种零件中随机选取了10个样品,测量每个零件的横截面积(单位:mm2)和耗材量(单位:mm3),得到如下数据:
样本号i 1 2 3 4 5 6 7 8 9 10 总和
零件的横截面积xi 0.03 0.05 0.04 0.07 0.07 0.04 0.05 0.06 0.06 0.05 0.52
耗材量yi 0.24 0.40 0.23 0.55 0.50 0.34 0.35 0.45 0.43 0.41 3.9
并计算得
(Ⅰ)估算刘铭同学制作的这种零件平均每个零件的横截面积以及平均一个零件的耗材量;
(Ⅱ)求刘铭同学制作的这种零件的横截面积和耗材量的样本相关系数(精确到0.01);
(Ⅲ)刘铭同学测量了自己实习期制作的所有这种零件的横截面积,并得到所有这种零件的横截面积的和为182mm2,若这种零件的耗材量和其横截面积近似成正比,请帮刘铭计算一下他制作的零件的总耗材量的估计值.
附:相关系数
共享时间:2023-10-19 难度:3 相似度:1.67
231631. (2015•西工大附中•三模) 为了保护环境,某市设立了若干个自行车自动租赁点,规定租车时间不超过一小时不收费,一小时以上不超过两小时收费一元,两小时以上,不超过三小时收费两元(不足一小时,按一小时计),甲、乙两人各租车一辆,甲、乙租车时间不超过一小时的概率为,一小时以上,不超过两小时的概率为,且两人租车时间都不会超过三小时(甲、乙两人租车时间相互独立).
(1)求甲、乙两人所付租车费相等的概率;
(2)设两人租车费用之和为ξ,求ξ的分布列及数学期望.
共享时间:2015-04-12 难度:1 相似度:1.5
169415. (2024•西安中学•高三上期末) 造林绿化对生态发展特别是在防风固沙、缓解温室效应、净化空气、涵养水源等方面有着重要意义.某苗木培养基地为了对某种树苗的高度偏差x(单位:cm)与树干最大直径偏差y(单位:mm)之间的关系进行分析,随机挑选了8株该品种的树苗,得到它们的偏差数据(偏差是指个别测定值与测定的平均值之差)如下:
树苗序号 1 2 3 4 5 6 7 8
高度偏差x 20 15 13 3 2 ﹣5 ﹣10 ﹣18
直径偏差y 6.5 3.5 3.5 1.5 0.5 ﹣0.5 ﹣2.5 ﹣3.5
(1)若xy之间具有线性相关关系,求y关于x的线性回归方程;
(2)若这种树苗的平均高度为120cm,树干最大直径平均为31.5mm,试由(1)的结论预测高度为128cm的这种树苗的树干最大直径为多少毫米.
参考数据:
参考公式:回归直线方程中斜率和截距的最小二乘估计:
共享时间:2024-02-27 难度:1 相似度:1.5
170464. (2022•西工大附中•高一下期末) 改革开放以来,我国经济持续高速增长.如图给出了我国2010年至2019年第二产业增加值与第一产业增加值的差值(以下简称为:产业差值)的折线图,记产业差值为y(单位:万亿元).
注:年份代码1﹣10分别对应年份2010﹣2019.

(1)求出y关于年份代码t的线性回归方程;
(2)利用(1)中的回归方程,分析2010﹣2019年我国产业差值的变化情况,并预测我国产业差值在哪一年约为34万亿元;
(3)结合折线图,试求出除去2014年产业差值后剩余的9年产业差值的平均值及方差(结果精确到0.1).
附:回归直线的斜率和截距的最小二乘法估计公式分别为:.样本方差公式:.参考数据:

共享时间:2022-07-08 难度:1 相似度:1.5
170392. (2022•长安区一中•高二下期末) 甲、乙两个乒乓球运动员进行乒乓球比赛,已知每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以用三局二胜或五局三胜制,问:
(1)在哪一种比赛制度下,甲获胜的可能性大?
(2)若采用三局二胜制,求比赛场次ξ的分布列及数学期望.
共享时间:2022-07-21 难度:1 相似度:1.5
170147. (2023•铁一中学•高二下期末) 某企业拥有甲、乙两条零件生产线,为了解零件质量情况,采用随机抽样方法从两条生产线共抽取180个零件,测量其尺寸(单位:mm)得到如下统计表,其中尺寸位于[55,58)的零件为一等品,位于[54,55)和[58,59)的零件为二等品,否则零件为三等品.
生产线 [53,54) [54,55) [55,56) [56,57) [57,58) [58,59) [59,60]
4 9 23 28 24 10 2
2 14 15 17 16 15 1
(1)将样本频率视为概率,从甲、乙两条生产线中分别随机抽取2个零件,每次抽取零件互不影响,以ξ表示这4个零件中一等品的数量,求ξ的分布列和数学期望E(ξ);
(2)已知该企业生产的零件随机装箱出售,每箱60个.产品出厂前,该企业可自愿选择是否对每箱零件进行检验.若执行检验,则每个零件的检验费用为5元,并将检验出的三等品更换为一等品或二等品;若不执行检验,则对卖出的每个三等品零件支付120元赔偿费用.现对一箱零件随机检验了10个,检出了1个三等品.将从两条生产线抽取的所有样本数据的频率视为概率,以整箱检验费用与赔偿费用之和的期望作为决策依据,是否需要对该箱余下的所有零件进行检验?请说明理由.
共享时间:2023-07-12 难度:1 相似度:1.5
170010. (2023•西工大附中•高三上期末) 近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:
表1
x 1 2 3 4 5 6 7
y 6 11 21 34 66 101 196
根据以上数据,绘制了如图所示的散点图.

(1)根据散点图判断,在推广期内,ya+bxycdxcd均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表2
表2
支付方式 现金 乘车卡 扫码
比例 10% 60% 30%
已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为,享受8折优惠的概率为,享受9折优惠的概率为.根据所给数据以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用.
参考数据:
100.54
62.14 1.54 2535 50.12 3.47
其中υilgyi
参考公式:对于一组数据(u1,υ1),(u2,υ2),…(un,υn),其回归直线的斜率和截距的最小二乘估计公式分别为:

共享时间:2023-02-15 难度:1 相似度:1.5
169919. (2023•长安区一中•高二下期末) 某学校共有1000名学生参加知识竞赛,其中男生500人,为了解该校学生在知识竞赛中的情况,采取分层抽样随机抽取了100名学生进行调查,分数分布在450~950分之间,根据调查的结果绘制的学生分数频率分布直方图如图所示:将分数不低于750分的学生称为“高分选手”.
(1)求a的值,并估计该校学生分数的平均数、中位数和众数;(同一组中的数据用该组区间的中点值作代表);
(2)现采用分层抽样的方式从分数落在[650,750),[750,850)内的两组学生中抽取8人,再从这8人中随机抽取3人,记被抽取的3名学生中属于“高分选手”的学生人数为随机变量X,求X的分布列及数学期望.

共享时间:2023-07-19 难度:1 相似度:1.5
169524. (2024•铁一中学•高三上期末) 已知正四棱锥PABCD的底面边长和高都为2.现从该棱锥的5个顶点中随机选取3个点构成三角形,设随机变量X表示所得三角形的面积.
(1)求概率PX=2)的值;
(2)求随机变量X的概率分布及其数学期望EX).

共享时间:2024-02-27 难度:1 相似度:1.5
169437. (2024•西安中学•高二下期末) 下表是某单位在2023年1~5月份用水量(单位:百吨)的一组数据:
月份x 1 2 3 4 5
用水量y 2.5 3 4 4.5 5.2
(1)从这5个月中任取2个月的用水量,求所取2个月的用水量之和不超过7(单位:百吨)的概率;
(2)若由经验回归方程得到的预测数据与实际数据的误差不超过0.05,视为“预测可靠”,那么由该单位前4个月的数据所得到的经验回归方程预测5月份的用水量是否可靠?说明理由.
参考公式:对于一组数据(x1y1),(x2y2),…,(xnyn),其回归直线的斜率和截距的
最小二乘估计公式分别为:
共享时间:2024-07-09 难度:1 相似度:1.5
169101. (2020•西工大附中•三模) 2020年初,武汉出现新型冠状病毒肺炎疫情,并快速席卷我国其他地区,口罩成了重要的防疫物资.某口罩生产厂不断加大投入,高速生产,现对其2月1日~2月9日连续9天的日生产量yi(单位:十万只,i=1,2,…,9)数据作了初步处理,得到如图所示的散点图及一些统计量的值:
2.72 19 139.09 1095
注:图中日期代码1~9分别对应2月1日~2月9日;表中
(1)从9个样本点中任意选取2个,在2个点的日生产量都不高于三十万只的条件下,求2个都高于二十万只的概率;
(2)由散点图分析,样本点都集中在曲线ylnbt+a)的附近,请求y关于t的方程ylnbt+a),并估计该厂从什么时候开始日生产量超过四十万只.
参考公式:回归直线方程是
参考数据:e4≈54.6.

共享时间:2020-04-14 难度:1 相似度:1.5
170640. (2021•长安区一中•高二上期末) 2020年8月11日新华社北京电,国家主席习近平对制止餐饮浪费行为作出重要指示.他指出,餐饮浪费现象,触目惊心、令人痛心!“谁知盘中餐,粒粒皆辛苦.”尽管我国粮食生产连年丰收,对粮食安全还是始终要有危机意识,今年全球新冠肺炎疫情所带来的影响更是给我们敲响了警钟.粮食问题是关乎民生的大问题.某地近几年来粮食产量逐步上升,如表是部分统计数据:
年份 2015 2016 2017 2018 2019
年份代码x 1 2 3 4 5
需求量y/万吨 136 146 157 176 186
(1)利用所给数据求粮食年需求量y与年份代码x之间的回归直线方程
(2)预测2020年的粮食需求量.
参考公式:
共享时间:2021-02-28 难度:1 相似度:1.5
169033. (2020•西安中学•三模) 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.
(Ⅰ)求甲、乙两人所付滑雪费用相同的概率;
(Ⅱ)设甲、乙两人所付的滑雪费用之和为随机变量ξ.求ξ的分布列与数学期望E(ξ).
共享时间:2020-04-01 难度:1 相似度:1.5
168964. (2021•交大附中•四模) 甲、乙两人进行抛硬币游戏,规定:每次抛币后,正面向上甲赢,否则乙赢.此时两个人正在游戏,且知甲再赢3次就获胜,而乙要再赢4次才获胜,其中一人获胜游戏结束.设再进行ξ次抛币后游戏结束.
(1)求概率P(ξ=4);
(2)求的分布列,并求其数学期望E(ξ).
共享时间:2021-04-20 难度:1 相似度:1.5
168849. (2021•西工大附中•十二模) .某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费.为此,政府调查了100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图所示.
(1)根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量μ的值;
(2)用频率估计概率,利用(1)的结果,假设该市每户居民月平均用电量X服从正态分布N(μ,σ2
(ⅰ)估计该市居民月平均用电量介于μ~240度之间的概率;
(ⅱ)利用(ⅰ)的结论,从该市所有居民中随机抽取3户,记月平均用电量介于μ~240度之间的户数为ξ,求ξ的分布列及数学期望E(ξ).

共享时间:2021-07-22 难度:1 相似度:1.5

dygzsxyn

2022-12-16

高中数学 | 高三上 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 3
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!