首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

21715. (2021•交大附中•七模) 如图,抛物线Myax2+bx+ba经过点(1,﹣3)和(﹣4,12),与两坐标轴的交点分别为ABC,顶点为D
(1)求抛物线M的表达式和顶点D的坐标;
(2)若抛物线Ny=﹣xh2+与抛物线M有一个公共点为E,则在抛物线N上是否存在一点F,使得以BCEF为顶点的四边形是以BC为边的平行四边形?若存在,请求出h的值;若不存在,请说明理由.
共享时间:2021-07-25 难度:4
[考点]
二次函数的性质,二次函数图像上点的坐标特征,二次函数的动点问题,二次函数综合应用,
[答案]
答案详见解析
[解析]
解:(1)将(1,﹣3),(﹣4,12)代入yax2+bx+ba

解得

∴抛物线M的表达式为,顶点D的坐标为
(2)存在.

x=0时,y=﹣2,
y=0时,
解得x1=﹣1,x2=4,
C(0,﹣2),B(4,0),

当四边形BCFE是平行四边形时,
可看出是EF可看成分别是BC平移相同的单位得到,

②﹣③得m+n=2h﹣1④,
(①+④)÷2得⑤,
(④﹣①)÷2得⑥,
将⑤,⑥代入③得h=±
当四边形BCEF是平行四边形时,
可看出是EF可看成分别是CB平移相同的单位得到,

②﹣③得m+n=2h﹣1④,
(①+④)÷2得⑤,
(④﹣①)÷2得⑥,
将⑤,⑥代入③得
综上,h的值为或±
 
[点评]
本题考查了"二次函数的性质,二次函数图像上点的坐标特征,二次函数的动点问题,二次函数综合应用",属于"综合题",熟悉考点和题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
19121. (2016•益新中学•模拟) 已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,使得点PQBO的四边形为平行四边形,求Q的坐标.

 
共享时间:2016-06-20 难度:4 相似度:1.67
19854. (2021•陕西省•真题) 已知抛物线y=﹣x2+2x+8与x轴交于点AB(点A在点B的左侧),与y轴交于点C
(1)求点BC的坐标;
(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB相似,且PCPO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.
共享时间:2021-06-25 难度:4 相似度:1.35
25810. (2024•西北大附中•一模) 如图,抛物线yx2x−3的对称轴l与x轴交于点A,与y轴交于点B.
(1)求点A、B的坐标;
(2)C为该抛物线上的一个动点,点D为点C关于直线l的对称点(点D在点C的左侧),点M在坐标平面内,请问是否存在这样的点C,使得四边形ACMD是正方形?若存在,请求出点C的坐标;若不存在,请说明理由.
德优题库
共享时间:2024-03-13 难度:4 相似度:1.35
173814. (2024•高新一中•九上三月) 已知二次函数的图象经过点A(0,2),B(1,0),C(﹣2,3).
(1)求二次函数的表达式;
(2)确定二次函数的对称轴和顶点坐标.
共享时间:2024-01-25 难度:1 相似度:1.25
189714. (2025•师大附中•九上期末) 某校劳动教育基地的蔬菜大棚横截面如图1所示,轮廓可近似看成抛物线的一部分.已知OA=12米,OA的垂直平分线与抛物线交于点P,与OA交于点H,点P是抛物线的顶点,且PH=9米.如图2,以OA所在直线为x轴,过点O且垂直OA的直线为y轴建立平面直角坐标系.
(1)求该抛物线的函数表达式;
(2)为防止极端天气对蔬菜大棚造成破坏,学校对原有大棚进行了加固,安装了两根支架(即线段OB、AB),且∠OBA=90°.在PH上有个照明灯E,经过照明灯E的横梁CD与OA平行.若照明灯E到支架顶端B的距离与横梁CD之和恰为6米(即BE+CD=6),求横梁CD的长.
德优题库
共享时间:2025-02-15 难度:5 相似度:1.25
181185. (2023•爱知中学•九上四月) 德优题库如图,在平面直角坐标系中,二次函数y=ax2+bx-2的图象经过点(2,-2)和(-6,10),且与x轴相交于A、B两点.
(1)求这个二次函数的表达式;
(2)已知点M、N是平面上的两个点,且M点在x轴的上方,若以A、B、M、N为顶点的四边形是正方形,请求出点M的坐标.
共享时间:2023-01-10 难度:5 相似度:1.25
181159. (2023•爱知中学•) 德优题库如图,在平面直角坐标系中,已知抛物线L1:y=ax2-2x+c经过点A(-1,0)和点C(0,-3),将抛物线L1沿x轴向右平移1个单位长度得到抛物线L2
(1)求抛物线L1与L2的表达式;
(2)若点P在抛物线L2上,且在x轴下方,过点P作PD⊥x轴于点D,连接PO,若△AOC与△POD相似,请求出点P的坐标.
共享时间:2022-12-01 难度:5 相似度:1.25
175955. (2024•交大附中•九上二月) 如图,已知抛物线:yax2+bx+cx轴交于点A(﹣1,0),BAB的左侧),与y轴交于点C(0,8),对称轴是直线P是第一象限内抛物线上的任一点.
(1)求抛物线的解析式;
(2)过点Px轴的垂线与线段BC交于点M,垂足为点H,若以PMC为顶点的三角形与△BMH相似,求点P的坐标.
共享时间:2024-12-24 难度:5 相似度:1.25
174030. (2024•西工大附中•九上二月) 德优题库如图,关于x的二次函数y=x2+bx+c的图象与x轴相交于点A(1,0)和点B(3,0),与y轴相交于点C.
(1)求二次函数的表达式和线段BC的长;
(2)在抛物线对称轴上找一点P,使△PBC为等腰三角形?直接写出点P的坐标.
共享时间:2024-12-10 难度:5 相似度:1.25
173843. (2024•高新一中•九上二月) 如图,已知抛物线交x轴于AB两点,交y轴于C点,点B的坐标为(3,0),OC=2,AB=4,点D为抛物线的顶点.
(1)求抛物线的函数表达式;
(2)若直线BC与抛物线的对称轴交于点E,点P是抛物线上的动点,点Q是直线BC上的动点,是否存在以DEPQ为顶点的四边形是以DE为边的平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
共享时间:2024-12-10 难度:5 相似度:1.25
173033. (2024•高新一中•九上二月) 德优题库如图,抛物线y=ax2+2x+c(a,c为常数,且a≠0)与x轴交于A、B两点,且与y轴交于点C(0,3),直线y=-x-1经过点A且与抛物线交于另一点D.
(1)求抛物线的解析式;
(2)Q点在x轴上且位于点B的左侧,连接BD,若以Q,B,C为顶点的三角形与△ABD相似,求点Q的坐标.
共享时间:2024-12-16 难度:5 相似度:1.25
173601. (2024•铁一中学•九上二月) 如图1,平面直角坐标系中,抛物线yax2+bx+cx轴于A(1,0),B(﹣3,0)两点,交y轴于点C(0,3),点M是线段OB上一个动点,过点Mx轴的垂线,交直线BC于点F,交抛物线于点E
(1)求抛物线的解析式;
(2)当线段EF长度最大时,求M点的坐标;
(3)如图2,是否存在点E,使得tan∠FCE=3,若存在,求点E的坐标;若不存在,请说明理由.
共享时间:2024-12-20 难度:5 相似度:1.25
173213. (2024•西光中学•九上二月) 如图,抛物线yax2+bx+2与x轴交于AB两点,且A的坐标为(2,0),与y轴交于点C,连接BC,抛物线的对称轴为直线D为第一象限内抛物线上的一个动点.过点DDEOA于点EDEAC交于点F,设点D的横坐标为m
(1)抛物线的表达式;
(2)抛物线上是否存在点D,使得以点ODE为顶点的三角形与△BOC相似?若存在,请求出m的值;若不存在,请说明理由.
共享时间:2024-12-10 难度:5 相似度:1.25
172868. (2024•逸翠园中学•九上四月) 如图,直线x轴交于点B(4,0),与y轴交于点C,抛物线经过点BC,与x轴的另一个交点为A
(1)求抛物线的解析式;
(2)若M是抛物线上一点,且∠MCB=∠ABC,请求出点M的坐标.
共享时间:2024-01-28 难度:5 相似度:1.25
23921. (2022•高新一中•二模) 如图,已知抛物线y=-x2+bx+c与直线AB交于点A(-1,4),点B(3,0).
(1)求抛物线的函数关系式;
(2)点M是x轴上方抛物线上一点,点N是直线AB上一点,若以B、O、M、N为顶点的四边形是以OB为边的平行四边形,求点M的坐标.
德优题库
共享时间:2022-03-14 难度:4 相似度:1.25

dysx2021

2021-07-25

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 659
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!