首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

170463. (2022•西工大附中•高一下期末) 改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).

(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;
(Ⅱ)从2007年至2016年随机选择3年,设X是选出的三年中体育产业年增长率超过20%的年数,求X的分布列与数学期望;
(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)
共享时间:2022-07-08 难度:1
[考点]
离散型随机变量的方差与标准差,
[答案]
见试题解答内容
[解析]
解:(Ⅰ)设A表示事件“从2007年至2016年随机选出1年,
该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上”.
由题意可知,2009年,2011年,2015年,2016年满足要求,
…(4分)
(Ⅱ)由题意可知,X的所有可能取值为0,1,2,3,




所以X的分布列为:
X 0 1 2 3
P
X的期望…(10分)
(Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.
从2014年开始连续三年的体育产业年增加值方差最大…(13分)
[点评]
本题考查了"离散型随机变量的方差与标准差,",属于"基础题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
166370. (2024•长安区一中•高三上四月) 脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17.
(1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数)
(2)假设全体参与者的脂肪含量为随机变量X,且XN(17,σ2),其中σ2近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率.
附:若随机变量×服从正态分布N(μ,σ2),则P(μ﹣σ≤×≤μ+σ≈0.6827,P(μ﹣2σ≤X≤μ+2σ)≈0.9545,≈4.7,≈4.8,0.158653≈0.004.
共享时间:2024-02-12 难度:1 相似度:2
167105. (2023•西安中学•高三上二月) 某中学进行校庆知识竞赛,参赛的同学需要从10道题中随机抽取4道来回答.竞赛规则规定:每题回答正确得10分,回答不正确得﹣5分.
(1)已知甲同学每题回答正确的概率均为0.5,且各题回答正确与否之间没有影响,记甲的总得分为X,求X的期望和方差;
(2)已知乙同学能正确回答10道题中的6道,记乙的总得分为Y,求Y的分布列.
共享时间:2023-12-24 难度:1 相似度:2
168033. (2023•西安中学•七模) 为了切实加强学校体育工作,促进学生积极参加体育锻炼,养成良好的锻炼习惯,某高中学校计划优化课程,增加学生体育锻炼时间,提高体质健康水平,某体质监测中心抽取了该校10名学生进行体质测试,得到如下表格:
序号i 1 2 3 4 5 6 7 8 9 10
成绩xi(分) 38 41 44 51 54 56 58 64 74 80
记这10名学生体质测试成绩的平均分与方差分别为s2.经计算
(1)求s2
(2)规定体质测试成绩低于50分为不合格,从这10名学生中任取3名,记体质测试成绩不合格的人数为X,求X的分布列及数学期望.
共享时间:2023-06-04 难度:1 相似度:2
169079. (2020•西工大附中•三模) 随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每日健步走的步数,从而为科学健身提供了一定帮助.某企业为了解员工每日健步走的情况,从该企业正常上班的员工中随机抽取300名,统计他们的每日健步走的步数(均不低于4千步,不超过20千步).按步数分组,得到频率分布直方图如图所示.
(1)求这300名员工日行步数x(单位:千步)的样本平均数(每组数据以该组区间的中点值为代表,结果保留整数);
(2)由直方图可以认为该企业员工的日行步数ξ(单位:千步)服从正态分布N(μ,σ2),其中μ为样本平均数,标准差σ的近似值为2,求该企业被抽取的300名员工中日行步数ξ∈(14,18]的人数;
(3)用样本估计总体,将频率视为概率.若工会从该企业员工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:日行步数不超过8千步者为“不健康生活方式者”,给予精神鼓励,奖励金额为每人0元;日行步数为8~14千步者为“一般生活方式者”,奖励金额为每人100元;日行步数为14千步以上者为“超健康生活方式者”,奖励金额为每人200元.求工会慰问奖励金额X(单位:元)的分布列和数学期望.
附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)≈0.6827,P(μ﹣2σ<ξ≤μ+2σ)≈0.9545,P(μ﹣3σ<ξ≤μ+3σ)≈0.9973.

共享时间:2020-04-06 难度:1 相似度:2
169124. (2020•西工大附中•三模) 某城市为疏导城市内的交通拥堵问题,现对城市中某条快速路进行限速,经智能交通管理服务系统观测计算,通过该快速路的所有车辆行驶速度近似服从正态分布ξ~N(μ,σ2),其中平均车速μ=82,标准差σ=4.通过分析,车速保持在(μ﹣σ,μ+2σ]之间,可令道路保持良好的行驶状况,故认为车速在(μ﹣σ,μ+2σ]之外的车辆需矫正速度(速度单位:km/h).

(1)从该快速路上观测到的车辆中任取一辆,估计该车辆需矫正速度的概率.
(2)某兴趣小组也对该快速路进行了观测,他们于某个时间段内随机对100辆车的速度进行取样,根据测量的数据列出如右的条形图.
(ⅰ)估计这100辆车的速度的中位数(同一区间中数据视为均匀分布);
(ⅱ)若以该兴趣小组测得数据中的频率视为概率,从该快速路上的所有车辆中任取三辆,记其中不需要矫正速度的车辆数为速度X,求X的分布列和期望.
(附:若ξ~N(μ,σ2),则P(μ﹣σ<X≤μ+σ)≈0.6827;P(μ﹣2σ<X≤μ+2σ)≈0.9545;P(μ﹣3σ<X≤μ+3σ)≈0.9973.)
共享时间:2020-04-03 难度:1 相似度:2
171634. (2024•西安工业大学附中•高二下期中) 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的20件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图(如图).
(1)根据频率分布直方图,求质量超过505克的产品数量;
(2)在上述抽取的20件产品中任取3件,设X为质量超过505克的产品数量,求X的分布列;
(3)从该流水线上任取5件产品,设Y为质量超过505克的产品数量,求Y的数学期望和方差.

共享时间:2024-05-25 难度:1 相似度:2
171740. (2024•西安八十三中•高二下期中) 据调查,目前对于已经近视的小学生,有两种配戴眼镜的选择,一种是佩戴传统的框架眼镜;另一种是佩戴角膜塑形镜,这种眼镜是晚上睡觉时佩戴的一种特殊的隐形眼镜(因其在一定程度上可以减缓近视的发展速度,所以越来越多的小学生家长选择角膜塑形镜控制孩子的近视发展),A市从该地区小学生中随机抽取容量为100的样本,其中因近视佩戴眼镜的有24人(其中佩戴角膜塑形镜的有8人,其中2名是男生,6名是女生).
(1)若从样本中选一位学生,已知这位小学生戴眼镜,那么,他戴的是角膜塑形镜的概率悬多大?
(2)从这8名跟角膜塑形镜的学生中,选出3个人,求其中男生人数X的期望与方差;
(3)若将样本的频率当做估计总体的概率,请问,从A市的小学生中,随机选出20位小学生,记其中佩戴角膜塑形镜的人数为Y,求恰好Y=5时的概率(不用化简)及Y的方差.
共享时间:2024-05-17 难度:1 相似度:2

dygzsxyn

2022-07-08

高中数学 | 高一下 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!