首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

21112. (2021•交大附中•九模) 问题提出:
(1)如图①,在Rt△ABC中,∠ACB=90°,AC=6,BC=2,则∠A的大小为        
问题探究:
(2)如图②,在四边形ABCD中,AD∥BC,对角线AC与BD相交于O.若AC=8,BD=6,∠AOD=60°,求四边形ABCD的面积;
问题解决:
(3)在西安市“三河一山”生态绿道长廊建设中.规划将某条绿道一侧的四边形区域修建成主题公园.设计要求:如图③,四边形ABCD中,AD=160m,BC=CD,∠ABC=∠BCD=120°.求这个主题公园的最大面积.
德优题库
共享时间:2021-08-10 难度:5
[考点]
平行线的判定与性质,含30度角的直角三角形,勾股定理,四边形综合题,特殊角的三角函数值,定弦定角与面积最大问题,
[答案]
答案详见解析
[解析]
解(1)Rt△ABC中,∠ACB=90°,AC=6,BC=2
∴tanA
∴∠A=30°,
故答案为:30°;
(2)过AAMBDM,过CCNBDN,如图:

在Rt△CON中,CNOC•sin∠CONOC•sin∠AODOC
在Rt△AOM中,AMOA•sin∠AODOA
SBCDBDCN×6×OCOC
SBADBDAM×6×OAOA
S四边形ABCDSBCD+SBADOC+OAOC+OA)=AC=12
(3)如图,连接BD,过点CCEBD,交AB的延长线于E,连接DE

BCCD,∠BCD=120°,
∴∠CBD=30°,
∵∠ABC=120°,
∴∠ABD=90°,
CEBD
∴∠CEB=90°,∠CBE=60°,
BEa,则CEBC=2a
BD=2a
∴tan∠BED=2
CEBD
SBDESBDC
S四边形ABCDSADE
∵∠AED为定角,AD为定长,
故画出△ADE的外接圆,如图,

EHAD,且EH经过圆心O时,SADE最大,
∵∠AOH=∠AED
OHam,则AH=2am
由勾股定理得OAam
AD=2AH
∴4a=160,
a
EHEO+OH×+m
SADEm2),
∴主题公园的最大面积为:m2
 
[点评]
本题考查了"平行线的判定与性质,含30度角的直角三角形,勾股定理,四边形综合题,特殊角的三角函数值,定弦定角与面积最大问题",属于"压轴题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
882. (2013•陕西省•真题) 问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

 
共享时间:2013-11-18 难度:3 相似度:1.17
811. (2015•陕西省•真题) 如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为      
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
共享时间:2015-08-18 难度:5 相似度:1.17
1052. (2019•陕西省•真题) 问题提出:
1)如图1,已知△ABC,试确定一点D,使得以ABCD为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
2)如图2,在矩形ABCD中,AB4BC10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC90°,求满足条件的点P到点A的距离;
问题解决:
3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
共享时间:2019-07-05 难度:5 相似度:1.17
3143. (2018•滨河中学•真题) 如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BCAB相交于点DE,连接AD.已知∠CAD=∠B
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB,求⊙O的半径.
德优题库
共享时间:2019-05-31 难度:3 相似度:1
6117. (2017•西工大附中•模拟) 如图,RtABC中,∠C90°,tanB,点DE分别在边ACBC上,且CDCBCACE
1)求证:DEAB
2)若CDBE5,求证:AB与△CDE的外接圆相切.
德优题库
共享时间:2017-07-21 难度:4 相似度:0.83
963. (2016•陕西省•真题) 问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
共享时间:2016-07-11 难度:5 相似度:0.83
3145. (2018•滨河中学•真题) 如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B    °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
                                                                           
共享时间:2019-05-31 难度:5 相似度:0.83
2897. (2019•益新中学•模拟) 在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1CC1.若△ABA1的面积为4,求△CBC1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
共享时间:2019-05-28 难度:4 相似度:0.73
6043. (2017•铁一中学•模拟) 如图,在△ABC中,以AB为直径作半圆O,半圆O与BC相交于点D,半圆O与AC相交于点E,且点D为弧BE的中点,半圆O的切线BF与AC的延长线相交于点F.
(1)求证:AC=AB;
(2)若EF:AE=9:16,求sin∠CBF.
德优题库
共享时间:2017-05-30 难度:4 相似度:0.73
921. (2017•陕西省•真题) 问题提出
(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为      
问题探究
(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.
问题解决
(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.
如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m.
请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)
共享时间:2017-07-10 难度:5 相似度:0.73
6044. (2017•铁一中学•模拟) 小敏在研究最值问题时遇到了这样的一个问题:如图1,在矩形ABCD中,AB=6,AD=8,E、F、G、H分别在矩形ABCD的边AD、AB、BC、CD上,则四边形EFGH的周长是否存在最小值?她决定按照老师讲的由特殊到一般逐步化归的思路去研究,请你帮助她完成下面的探究过程.
探究1:如图2,在AF=2,DH=5的条件下,请在图2中画出周长最小的四边形EFGH,并求出周长的最小值;
探究2:在探究1的启发下,小敏画出了图3:作F关于AD的对称点F1,作F关于BC的对称点F2,作F1关于CD的对称点F3,连接F2F3交CD于H,交BC于点G,连接F1H交AD于E,连接EF、FG,借助图3,他发现四边形EFGH的周长有最小值,并顺利解决了遇到的这个问题.请求出四边形EFGH的周长的最小值.
拓广探究:解决了上述问题后,小敏又想到了新的问题,当四边形EFGH的周长最小时,四边形EFGH的面积是否存在最大值?请帮助小敏解决这个问题,若存在,请求出此时面积的最大值,若不存在请说明理由.
德优题库
共享时间:2017-05-30 难度:5 相似度:0.73
1140. (2020•陕西省•副题) 小宁和同学们想知道学校操场旁一棵大树比一棵小树高多少,于是他们拿着三角尺和皮尺来到了操场,如图所示,小宁在E处用三角尺测得小树CD顶部C的仰角为30°,然后她前后移动调整,在M处用三角尺测得大树AB顶部A的仰角也是30°.已知,B、D、E、M四点共线,AB⊥BM,CD⊥BM,EF⊥BM,MN⊥BM,小宁眼睛距地面的高度不变,即EF=MN,他们测得BD=4.5米,EM=1.5米,求大树AB比小树CD高多少米?
德优题库
共享时间:2020-07-31 难度:3 相似度:0.67
2895. (2019•益新中学•模拟) 如图,PB为⊙O的切线,B为切点.过BOP的垂线BA,垂足为C,交⊙O于点A,连接PAAO,并延长AO交⊙O于点E,与PB的延长线交于点D
(1)求证:PA是⊙O的切线.
(2)若,且OC=4,求PA的长.
                                                                                                                                  
共享时间:2019-05-28 难度:3 相似度:0.67
850. (2014•陕西省•真题) 问题探究
(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
问题解决
(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.

 
共享时间:2014-09-18 难度:3 相似度:0.55
4529. (2016•交大附中•真题) 计算:(3π0+4sin45°﹣+|1|
共享时间:2018-06-06 难度:3 相似度:0.5

jdfz514

2021-08-10

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 581
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!