服务热线
string(63) "近似数和有效数字,数学常识,正多边形和圆,"
搜题▪组卷
约1500年前,我国伟大的数学家和天文学家祖冲之计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率精确到小数点后7位的人.如图,若⊙O的半径为2,若用⊙O的内接正六边形的周长来估计⊙O的周长,则⊙O的周长与其内接正六边形的周长的差值为 .(结果保留π)

刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.设⊙O的半径为2,若用⊙O的内接正六边形的面积来近似估计⊙O的面积,则⊙O的面积约为 (结果保留根号).
早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积.如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为 .
我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O的面积,可得π的估计值为 .(结果保留根号)
csyn@dyw.com
2024-03-15
初中数学 | | 填空题