[解析]
解:(Ⅰ)当a=2时,f(x)=ex-2x+sinx-1,则f′(x)=ex-2+cosx,
可得f″(x)=ex-sinx,
故x∈(-∞,0]时,可得ex≤1,故f′(x)≤-1+cosx≤0,
故f(x)在(-∞,0]内单调递减,
当x∈(0,+∞)时,ex>1,故f″(x)>1-sinx≥0,
故f′(x)在(0,+∞)上单调递增,故f′(x)>f′(0)=0,
故f(x)在(0,+∞)上单调递增,
综上,f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;
(Ⅱ)证明:当x=0时,f(0)=0,故x=0是f(x)的一个零点,
由f′(x)=ex-a+cosx,令g(x)=ex-a+cosx,可得g′(x)=ex-sinx,
∵1≤a≤2,
①当x∈(0,+∞)时,g′(x)=ex-sinx>e0-sinx≥0,f′(x)在(0,+∞)单调递增,
则 f′(x)>f′(0)=2-a>0,f(x)在(0,+∞)单调递增,f(x)>f(0)=0,
故f(x)在(0,+∞)无零点,
②当x∈(-∞,-π]时,-ax≥π,有f(x)≥ex+π+sinx-1>0,
故f(x)在(-∞,-π]上无零点,
③当x∈(-π,0)时,sinx<0,g′(x)>0,f′(x)在(-π,0)单调递增,
又f′(0)=2-a>0,f′(-π)=e-π-1-a<0,
故存在唯一x0∈(-π,0),使得f′(x0)=0,
当x∈(-π,x0)时,f′(x)<0,f(x)在(-π,x0)单调递减,
当x∈(x0,0)时,f′(x)>0,f(x)在(x0,0)单调递增,
又f(-π)=e-π+aπ-1>0,f(x0)<f(0)=0,
故f(x)在(-π,0)有1个零点,
综上,当1≤a<2时,f(x)有2个零点.