首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

211176. (2025•阎良区•三模) 【问题提出】
(1)如图1,点A在直线m上,点BC均在直线n上,连接ABACmn,且mn之间的距离为8,BC=9,则△ABC的面积为        
【问题探究】
(2)如图2,△ABC和△CDE均为等腰直角三角形,∠BAC=∠CDE=90°,连接ADBE,若△BCE的面积为6,求△ACD的面积;
【问题解决】
(3)2025年4月28日,中共中央、国务院《生态环境保护督察工作条例》的发布,对于全面推进美丽中国建设具有重要意义.为了保护生态环境,某集团每年都会种植植被,如图3,五边形ABCDE是该集团今年规划的植被种植区域的平面示意图,米,米,米,∠A=∠ABC=∠BCD=90°,BC的中点F处有一个出入口,集团规划人员计划在DE上取一个点H,在五边形ABCDE内部取一个点G,使得△FGH是以点G为直角顶点的等腰直角三角形,并在△BFG和△CFH区域内种植某种裸子植物,为了合理购买植物幼苗的数量,需要知道△BFG和△CFH的面积之和,请你帮助规划人员计算出△BFG和△CFH的面积之和.

 
共享时间:2025-04-14 难度:1
[考点]
四边形综合题,
[答案]
(1)36;(2)3;(3)27000平方米.
[解析]
解:(1)∵mn之间的距离为8,BC=9,
∴△ABC的面积为
故答案为:36;
(2)∵△ABC 和△CDE均为等腰直角三角形,∠BAC=∠CDE=90°,
∴∠ACB=∠DCE=45°,

∴△BCE∽△ACD,且△BCE与△ACD的相似比为
∴△BCE与△ACD的面积比为2:1,

(3)连接EFBE,取BE的中点O,连接OF,如图3,
米,米,
AEBF,∠A=∠ABC=90°,
AEBF
∴四边形ABFE是矩形,
ABAE
∴四边形ABFE是正方形,
O为正方形ABFE的中心,
米,△OBF和△BEF均为等腰直角三角形,
∴∠OFB=45°,
HF 的中点M,连接CMOMGM,如图,则
∵△FHG为等腰直角三角形,
∴△GFM为等腰直角三角形
,由(2)可得
SBFG+SCFH=2SOFM+2SCMF=2S四边形OMCF=2SOCF+2SOCM
过点DDKEF于点A,过点OONBF于点N,取EF的中点P,连接PM,连接OCEF于点T,过点PPQOC于点Q,则有四边形CDKF为矩形,如图,

PM分别为EFFH的中点,
PM为△FHE的中位线,
PMDE
∵四边形CDKF为矩形,
米,米,
米,
由四边形ABFE为正方形可得米,米,CNON
(米),
(平方米),
(米),
(米),

∴∠DEK=∠CTF
OCDE
OCPM
∴点MPM所在直线上运动,点MOC的距离即为PQ的长,
∵tan∠PTQ=tan∠CTF=3,
PQ=3QT
在Rt△PQT中,TQ2+9TQ2PT2=1000,
TQ=10 米(负值已舍),
PQ=30米,
(平方米),
SBFG+SCFH=2SOCF+2SOCM=2×9000+2×4500=27000(平方米),
∴△BFG和△CFH的面积之和为27000平方米.
[点评]
本题考查了"四边形综合题,",属于"常考题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
212216. (2025•滨河中学•三模) [问题提出]
(1)如图①,AB为半圆的直径,O为圆心,C,D为半圆上的两点,若OB=5,BC=6,则sin∠BDC=        
[问题探究]
(2)如图②,△ABC中,∠BAC=90°,∠B=60°,D为BC边的中点,AB边上有一点E,连接ED,当DE=4时,作DF⊥DE交AC边于点F,垂足为D,连接EF,求EF的长.
[拓展延伸]
(3)如图③,有一个四边形花园ABCD,AB=60m,BC=80m,AD=70m,根据设计要求,AD∥BC,∠ABC=90°,在DC边上有一点P,连接BP交AC于点E,作EF⊥BP交AD边于点F,垂足为E,连接BF交AC于点G,园丁师傅想在△BEG区域种植一种红色花卉,在四边形花园ABCD内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植总费用至少需要多少元?
德优题库
共享时间:2025-04-14 难度:1 相似度:2
196609. (2024•西工大附中•七下期末) 德优题库甲、乙两个工程组同时挖掘某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和y(m)与甲组挖掘时间x(天)之间的关系如图所示.
(1)甲组比乙组多挖掘了        天,甲组挖掘的总长度是        m;
(2)求乙组停工后y关于x的关系式.​
共享时间:2024-07-17 难度:1 相似度:2
196034. (2025•鄠邑区•九上期末) 【提出问题】(1)如图1,正方形ABCD的边长为2,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF绕点O旋转,∠EOF的两边分别与正方形ABCD的边BCCD交于点E和点F(点F与点C,点D不重合),求出四边形OECF的面积;
【问题解决】(2)如图2,一个菱形菜园ABCDACBD为人行步道,且交于点O.要在菜园的下方建一四边形储藏间OECF,已知点EBC上,点FCD上,∠ABC=∠EOF=60°.若四边形储藏间OECF的占地面积为(人行步道的面积忽略不计),要在菱形菜园ABCD围一圈篱笆,则需要篱笆多少m
共享时间:2025-02-28 难度:1 相似度:2
196210. (2024•师大附中•八下期末) (1)【探究发现】如图1,P是等边△ABC内一点,PA=4,PB=3,PC=5.求∠APB的度数.

解:将△BPC绕点B逆时针旋转60°到△BPA的位置,连接PP
则△BPP′是         三角形.
PP′=PB=3
又∵PA=4,PAPC=5
PP'2+PA2P'A2
∴△PPA为直角三角形
∴∠APB的度数为          
(2)【类比延伸】如图2,在正方形ABCD内部有一点P,连接PAPBPC,若PA=2,PB=4,∠APB=135°,求PC的长;
(3)【拓展迁移】如图3,在正六边形ABCDEF内部有一点P,若PA=4,PB=2,,请直接写出∠APB的度数及正六边形的边长.
共享时间:2024-07-01 难度:1 相似度:2
196310. (2024•高新一中•九上期末) 问题提出:
(1)如图①,已知△ABC是面积为的等边三角形,AD是∠BAC的平分线,则AB的长为      
问题探究:
(2)如图②,在△ABC中,∠C=90°,ACBCAB=4,点DAB的中点,点EF分别在边ACBC上,且∠EDF=90°.证明:DEDF
问题解决:
(3)如图③,李叔叔准备在一块空地上修建一个矩形花园ABCD,然后将其分割种植三种不同的花卉.按照他的分割方案,点PQ分别在ADBC上,连接PQPBPC,∠BPC=60°,EF分别在PBPC上,连接QEQFQEQF,∠EQF=120°,其中四边形PEQF种植玫瑰,△ABP和△PCD种植郁金香,剩下的区域种植康乃馨,根据实际需要,要求种植玫瑰的四边形PEQF的面积为,为了节约成本,矩形花园ABCD的面积是否存在最小值?若存在,请求出矩形ABCD的最小面积,若不存在,请说明理由.

 
共享时间:2024-02-28 难度:1 相似度:2
196385. (2024•高新一中•八下期末) 在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边△APEAPE按逆时针排列),点E的位置随点P的位置变化而变化.
(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BPCE的数量关系是           BCCE的位置关系是           
(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2BE=2,请直接写出△APE的面积.
共享时间:2024-07-26 难度:1 相似度:2
196410. (2024•高新一中•八上期末) 【问题发现】
(1)数学课堂上,李老师提出了一个问题:如图1所示,将军每天从军营A出发,先到河边1饮马,再去河岸同侧的军营B开会,应该怎么走才能使得路程最短?
小明略加思索就给出了解决方法:如图2,作B关于直线的对称点B′,连接AB′与直线交于C,点C就是所求位置.
德优题库
∵直线l是点B,B′的对称轴,
∴CB=CB'.
∴AC+CB=AC+CB'.
根据“       ”可得AC+CB的最小值是AB′.
【问题探究】
(2)如图3,在等边△ABC中,AB=6,AD⊥BC,E是AB边上的一点,且AE=2,F是AD上的一个动点,求△BEF周长的最小值.
【问题解决】(3)如图4,在四边形ABDC中,∠A=∠B=90°,AB=60,AC=50,BD=110,点E是线段AB上的任一点,连接EC,以EC为直角边在AC下方作等腰直角三角形ECF,FE为斜边.CD边上存在一个点G,且点G到BD的距离等于20,连接FG,△CFG的周长是否存在最小值?若存在,请求出△CFG的周长最小值;若不存在,请说明理由.
共享时间:2024-02-16 难度:1 相似度:2
196483. (2024•爱知中学•八下期末) (1)问题提出
如图1,在菱形ABCD中,∠B=60°,AB=4,则菱形ABCD的面积为                 

(2)问题探究
如图2,在四边形ABCD中,ADCD,∠ABC=∠ADC=90°,连接BD.已知BD=6,求AB+BC的值.
(3)问题应用
如图3,某湿地公园打算修建一个菱形ABCD花园,并且使∠ABC=60°,点P是菱形ABCD内部一点,连接PAPBPCPD,其中PA=200m,∠PAD=∠PDC,现计划在△APD和△BPC内种植郁金香,已知郁金香的种植单价为200元/平米,请你求出种植郁金香的总价.
共享时间:2024-07-24 难度:1 相似度:2
196561. (2024•莲湖区•八下期末) 【问题提出】
(1)如图1,在△ABC中,AD⊥BC,∠B=30°,若BD=3,求AD的长.
【问题解决】
(2)为响应市政府“建设美丽城市,改善生活环境”的号召,某小区欲建造如图2所示的四边形ABCD休闲广场.已知∠B=∠D=90°,∠BAD=120°,AB=AD=40米,在对角线AC上有一个凉亭O,测得OC=30米.按规划要求,需过凉亭O修建一条笔直的小路MN,使得点M,N分别在边BC,CD上,连接AM,AN,其中四边形AMCN为健身休闲区,其他区域为景观绿化区.按此要求修建的这个健身休闲区(四边形AMCN)是否存在最小面积?若存在,求出最小面积;若不存在,请说明理由.德优题库
共享时间:2024-07-24 难度:1 相似度:2
196610. (2024•西工大附中•七下期末) 问题发现
(1)初一数学兴趣小组的同学在研究等边三角形时,发现了含有30°角的直角三角形的性质.如图1,在等边△ABC中,ADBC于点D,则,若设BDa,则ABBC=2BD=2aAD                ADBD的数量关系为                     
接着同学们还证明了:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.问题探究
(2)如图2,在等腰Rt△ABC中,∠BAC=90°,DBC边上一点,以AD为边在AD右侧作等腰Rt△ADE,∠DAE=90°,连接CE.若BD=1,求△CDE的面积.
问题解决
(3)如图3,长方形ABCD是植物园中一个郁金香种植区的平面示意图.AB=60米,BC=120米,点EF分别在ABAD边上,BE=20米,∠AEF=60°,△AEF内部为白色郁金香种植区.点PBC的中点,点MEF上,EF下方的等边△MPQ内部为黄色郁金香种植区,△BPM和△CPQ的内部分别为红色和粉色郁金香种植区.请探究△BPM和△CPQ的面积之和是否为定值?如果是,请求出定值,如果不是,请说明理由.
共享时间:2024-07-17 难度:1 相似度:2
193010. (2023•西安二十三中•九上二月) 如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段              ;S矩形AEFG:S▱ABCD=       
(2)平行四边形ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.
德优题库
共享时间:2023-12-22 难度:1 相似度:2
196681. (2024•西工大附中•八下期末) 德优题库如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A,C两点的坐标分别为(6,0),(-3,4).将线段CO先向右平移6个单位后,再向下平移2个单位,得到线段MN.
(1)点M的坐标为        ,点N的坐标为        
(2)点D是直线MN上的动点,在x轴上是否存在E,使得以O,B,D,E为顶点的四边形为平行四边形?若存在,请求出满足条件的所有点E的坐标;若不存在,请说明理由.
共享时间:2024-07-18 难度:1 相似度:2
196682. (2024•西工大附中•八下期末) 【问题提出】
(1)如图1,在菱形ABCD中,AB=4,∠B=60°,其中EF分别是BCCD边上的中点,则△AEF的周长为                 
【问题探究】
(2)如图2,在四边形ABCD中,ABBC=4,∠B=60°,ABCD,点EBC边上,点FCD边上,且∠EAF=60°,则△CEF周长的最小值为                   
【问题解决】
(3)如图3,规划部门准备绿化一块四边形空地ABCD,计划在边BCCD上分别取点EF,利用小路AEAF将这块四边形空地ABCD分开,在四边形空地AECF内种植郁金香,其他区域种植草坪,为了方便市民游览,决定取AC的中点M,沿着MEECCFMF修建观赏长廊.经测量∠B=45°,∠BCD=120°,AB=6km,∠EAF=60°,为节约建设成本,修建长廊长度之和应该最短.请你帮助规划部门确定ME+EC+CF+MF是否有最小值.若存在,请求出ME+EC+CF+MF的最小值;若不存在,请说明理由.
共享时间:2024-07-18 难度:1 相似度:2
196803. (2024•铁一中学•九上期末) 探究与证明
(1)如图1,点B是线段CD上的一点,AC⊥BC,AB⊥BE,ED⊥BD,垂足分别为C,B,D,AB=BE.求证:△ACB≌△BDE;
类比迁移
(2)如图2,矩形ABCD中,点E、F分别在边AB、AD上,且AE=3,AF=4,连接EF,把三角形AEF沿EF翻叠,若点A的对应点G恰好落在边BC上,则BE的长为        
拓展应用
(3)如图3,有一个矩形广场ABCD,AB=30,AD=50,广场上要修两条小路EF、EG,要求点E、F、G分别在边AB、AD、BC上,且BE=20,EF=EG,∠FEG=60°,广场上五边形EFDCG内部将进行绿化,请求出绿化面积.
德优题库
共享时间:2024-02-08 难度:1 相似度:2
196827. (2024•铁一中学•八下期末) (1)△ABC与△ADE如图1所示位置摆放,且∠BAC=∠DAE,AB=AC,AD=AE,△ADE绕点A按逆时针方向旋转至图2的位置,连接BD,CE,求证:BD=CE.
(2)如图3,四边形ABCD中,已知AB=AD,∠BAD=60°,∠BCD=120°,AC=6,则BC+CD=       
(3)如图4,△ABC中,∠ABC=45°,AB≠BC,BE⊥AC于点E,AD⊥BC于点D.连接DE,点F与点D关于直线AC对称,连接DF、EF.猜想线段AE、BE、DF之间的数量关系,并证明.德优题库
共享时间:2024-07-08 难度:1 相似度:2

dyczsxyn

2025-04-14

初中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 1
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!