首页 | 客服 | 上传赚现
AI助手
德优题库AI助手

AI助手

搜题▪组卷

(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

168596. (2021•西安中学•九模) 交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
交强险浮动因素和浮动费率比率表
  浮动因素 浮动比率
A1 上一个年度未发生有责任道路交通事故 下浮10%
A2 上两个年度未发生有责任道路交通事故 下浮20%
A3 上三个及以上年度未发生有责任道路交通事故 下浮30%
A4 上一个年度发生一次有责任不涉及死亡的道路交通事故 0%
A5 上一个年度发生两次及两次以上有责任道路交通事故 上浮10%
A6 上一个年度发生有责任道路交通死亡事故 上浮30%
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 A1 A2 A3 A4 A5 A6
数量 20 10 10 20 15 5
以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,a=950.某同学家里有一辆该品牌车且车龄刚满三年,记X为该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
共享时间:2021-06-23 难度:1
[考点]
离散型随机变量的均值(数学期望),
[答案]
(1)X的分布列为:X0.9a0.8a0.7aa1.1a1.3aPEX)≈903
(2)①
②50万.
[解析]
解:(1)由题意可知X的可能取值为0.9a,0.8a,0.7aa,1.1a,1.3a
由统计数据可知:
PX=0.9a)=
PX=0.8a)=
PX=0.7a)=
PXa)=
PX=1.1a)=
PX=1.3a)=
所以X的分布列为:
X 0.9a 0.8a 0.7a a 1.1a 1.3a
P
所以……(6分)
(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为
三辆车中至多有一辆事故车的概率为………………(9分)
②设Y为该销售商购进并销售一辆二手车的利润,Y的可能取值为﹣4000,8000.
所以Y的分布列为:
Y ﹣4000 8000
P
所以.
所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望为100EY)=50万元.………………(12分)
[点评]
本题考查了"离散型随机变量的均值(数学期望),",属于"基础题",熟悉题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请向平台申诉! !版权申诉
考点说明
灰色代表去掉的考点,绿色代表未变动的考点,红色代表新增的考点
272462. (2021•西安中学•高三上一月) 某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年.如图1所示,两个二级过滤器采用并联安装,再与一级过滤器串联安装
德优题库
其中每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).客户在安装净水系统的同时购买滤芯和在使用过程中单独购买滤芯的情况如下表:
一级滤芯 二级滤芯
安装净水系统的同时购买 160元/个 80元/个
使用过程中单独购买 200元/个 100元/个
现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该净水系统在十年使用期内更换的滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.
表1:一级滤芯更换频数分布表
一级滤芯更换的个数 8 9
频数 60 40
以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.
(Ⅰ)记Y表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求Y的分布列及数学期望;
(Ⅱ)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为21的概率;
(Ⅲ)记m,n分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若m+n=18且m∈{8,9},以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定m,n的值.
共享时间:2021-10-22 难度:1 相似度:2
170876. (2025•师大附中•高二下期中) 某食品生产厂生产某种市场需求量很大的食品,这种食品有AB两类关键元素含量指标需要检测,设两元素含量指标达标与否互不影响.若A元素指标达标的概率为B元素指标达标的概率为,按质量检验规定:两元素含量指标都达标的食品才为合格品.
(1)一个食品经过检测,求AB两类元素至少一类元素含量指标达标的概率;
(2)任意依次抽取该种食品4个,设ξ表示其中合格品的个数,求ξ分布列及E(ξ).
共享时间:2025-04-26 难度:1 相似度:2
172094. (2023•铁一中学•高二下期中) 2022年12月6日全国各地放开对新冠疫情的管控,在强大的祖国庇护下平稳抗疫三年的中国人民迎来了与新冠变异毒株奥密克戎的首次正面交锋.某市为了更好的了解全体中小学生感染新冠感冒后的情况,以便及时补充医疗资源.从全市中小学生中随机抽取了100名抗原检测为阳性的中小学生监测其健康状况,100名中小学生感染奥密克戎后的疼痛指数为X,并以此为样本得到了如下图所示的表格:
疼痛指数X X≤10 10X<90 X≥90
人数(人) 10 81 9
名称 无症状感染者 轻症感染者 重症感染者
其中轻症感染者和重症感染者统称为有症状感染者.
(1)统计学中常用L表示在事件A发生的条件下事件B发生的似然比.现从样本中随机抽取1名学生,记事件A:该名学生为有症状感染者,事件B:该名学生为重症感染者,求似然比L的值;
(2)若该市所有抗原检测为阳性的中小学生的疼痛指数X近似的服从正态分布N(50,σ2),且.若从该市众多抗原检测为阳性的中小学生中随机抽取3名,设这3名学生中轻症感染者人数为Y,求Y的分布列及数学期望.
共享时间:2023-05-16 难度:1 相似度:2
231194. (2016•西工大附中•二模) 第二届世界互联网大会将于2015年12月16日﹣18日在浙江乌镇进行,届时将有世界各国的互联网精英云集于此共商世界互联网的未来.现在人们的生活已经离不开互联网,网上购物已悄悄走进人们的生活,在刚刚过去的双十一,有4位好友相约:每个人通过执一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物.
(1)求这4个人中恰有1人去淘宝网购物的概率;
(2)用ξ,η本别表示这4个人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X分分布列与数学期望EX
共享时间:2016-03-22 难度:1 相似度:2
171738. (2024•西安八十三中•高二下期中) 一个不透明的盒子中有质地、大小均相同的7个小球,其中4个白球,3个黑球,现采取不放回的方式每次从盒中随机抽取一个小球,当盒中只剩一种颜色时,停止取球.
(1)求停止取球时盒中恰好剩3个白球的概率;
(2)停止取球时,记总的抽取次数为X,求X的分布列与数学期望:
共享时间:2024-05-17 难度:1 相似度:2
171438. (2024•长安区一中•高二下期中) 盒中有标记数字1,2,3,4的小球各2个,随机一次取出3个小球.
(1)求取出的3个小球上的数字两两不同的概率;
(2)记取出的3个小球上的最小数字为X,求X的分布列及数学期望EX).
共享时间:2024-05-30 难度:1 相似度:2
171371. (2023•西安中学•高三上期中) 2022年10月16日至10月22日,中国共产党第二十次全国代表大会在北京召开,此次大会是在全党全国各族人民迈上全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的关键时刻召开的一次十分重要的大会.在树人中学团委的组织下,高二年级各班团支部举行了“学习二十大,做有为青年”的知识竞赛活动,经过激烈竞争,高二(1)班(以下简称一班)和高二(3)班(以下简称三班)进入了最后的年级决赛,决赛规定:共进行5轮比赛,每轮比赛每个班可以从AB两个题库中任选1题作答,在前两轮比赛中每个班的题目必须来自同一题库,后三轮比赛中每个班的题目必须来自同一题库,A题库每题20分,B题库每题30分,一班能正确回答AB题库每题的概率分别为,三班能正确回答AB题库每题的概率均为,且每轮答题结果互不影响.
(1)若一班前两轮选A题库,后三轮选B题库,求其总分不少于100分的概率;
(2)若一班和三班在前两轮比赛中均选了B题库,而且一班两轮得分60分,三班两轮得分30分,一班后三轮换成A题库,三班后三轮不更换题库,设一班最后的总分为X,求X的分布列,并从每班总分的均值来判断,哪个班赢下这场比赛?
共享时间:2023-11-22 难度:1 相似度:2
171262. (2024•师大附中•高二下期中) 软笔书法又称中国书法,是我国的国粹之一,琴棋书画中的“书”指的正是书法.作为我国的独有艺术,软笔书法不仅能够陶冶情操,培养孩子对艺术的审美还能开发孩子的智力,拓展孩子的思维与手的灵活性,对孩子的身心健康发展起着重要的作用.近年来越来越多的家长开始注重孩子的书法教育.某书法培训机构统计了该机构学习软笔书法的学生人数(每人只学习一种书体),得到相关数据统计表如下:
书体 楷书 行书 草书 隶书 篆书
人数 24 16 10 20 10
(1)该培训机构统计了某周学生软笔书法作业完成情况,得到下表,其中a≤60.
  认真完成 不认真完成 总计
男生   a
女生      
总计 60    
若根据小概率值α=0.10的独立性检验可以认为该周学生是否认真完成作业与性别有关,求该培训机构学习软笔书法的女生的人数.
(2)现从学习楷书与行书的学生中用分层随机抽样的方法抽取10人,再从这10人中随机抽取4人,记4人中学习行书的人数为X,求X的分布列及数学期望.
参考公式及数据:
α 0.10 0.05 0.01
xα 2.706 3.841 6.635
共享时间:2024-05-17 难度:1 相似度:2
170486. (2022•西工大附中•高二下期末) 在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有3个红球和7个白球,这些球除颜色外完全相同,一次从中摸出3个球.
(1)设ξ表示摸出的红球的个数,求ξ的分布列和数学期望;
(2)为了提高同学们参与游戏的积极性,参加游戏的同学每人可摸球两次,每次摸球后放回,若规定两次共摸出红球的个数不少于n,且中奖概率大于60%时,即中奖,求n的最大值.
共享时间:2022-07-11 难度:1 相似度:2
237424. (2021•铁一中学•高二下期中) .2020年新冠肺炎疫情肆虐全球,各个国家都翘首以盼疫苗上市.现在全球已经有多款疫苗上市,并且陆续在各个国家开始接种.如今我国有一款疫苗,经过三期临床试验以后,估计该款疫苗每次接种的有效率可达90%,并且已经陆续接到其他国家的订单.现已知该款疫苗需要接种两次,假设前后两次接种互不影响.
(1)某人接种了我国的这款疫苗,则其可以接种成功的概率为多少?
(2)已知某国家已经有意向与我国签订疫苗订单,买疫苗之后免费为本国首批10万人注射.但是由于部分人可能在两次注射疫苗之后未接种成功,所以该国决定购买一批预备疫苗为之后没有接种成功的人进行第二轮注射,第二轮注射仍为注射两次.根据以上信息,估计理想情况下该国需要从我国一共购买多少支疫苗?
共享时间:2021-05-29 难度:1 相似度:2
170392. (2022•长安区一中•高二下期末) 甲、乙两个乒乓球运动员进行乒乓球比赛,已知每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以用三局二胜或五局三胜制,问:
(1)在哪一种比赛制度下,甲获胜的可能性大?
(2)若采用三局二胜制,求比赛场次ξ的分布列及数学期望.
共享时间:2022-07-21 难度:1 相似度:2
170147. (2023•铁一中学•高二下期末) 某企业拥有甲、乙两条零件生产线,为了解零件质量情况,采用随机抽样方法从两条生产线共抽取180个零件,测量其尺寸(单位:mm)得到如下统计表,其中尺寸位于[55,58)的零件为一等品,位于[54,55)和[58,59)的零件为二等品,否则零件为三等品.
生产线 [53,54) [54,55) [55,56) [56,57) [57,58) [58,59) [59,60]
4 9 23 28 24 10 2
2 14 15 17 16 15 1
(1)将样本频率视为概率,从甲、乙两条生产线中分别随机抽取2个零件,每次抽取零件互不影响,以ξ表示这4个零件中一等品的数量,求ξ的分布列和数学期望E(ξ);
(2)已知该企业生产的零件随机装箱出售,每箱60个.产品出厂前,该企业可自愿选择是否对每箱零件进行检验.若执行检验,则每个零件的检验费用为5元,并将检验出的三等品更换为一等品或二等品;若不执行检验,则对卖出的每个三等品零件支付120元赔偿费用.现对一箱零件随机检验了10个,检出了1个三等品.将从两条生产线抽取的所有样本数据的频率视为概率,以整箱检验费用与赔偿费用之和的期望作为决策依据,是否需要对该箱余下的所有零件进行检验?请说明理由.
共享时间:2023-07-12 难度:1 相似度:2
169919. (2023•长安区一中•高二下期末) 某学校共有1000名学生参加知识竞赛,其中男生500人,为了解该校学生在知识竞赛中的情况,采取分层抽样随机抽取了100名学生进行调查,分数分布在450~950分之间,根据调查的结果绘制的学生分数频率分布直方图如图所示:将分数不低于750分的学生称为“高分选手”.
(1)求a的值,并估计该校学生分数的平均数、中位数和众数;(同一组中的数据用该组区间的中点值作代表);
(2)现采用分层抽样的方式从分数落在[650,750),[750,850)内的两组学生中抽取8人,再从这8人中随机抽取3人,记被抽取的3名学生中属于“高分选手”的学生人数为随机变量X,求X的分布列及数学期望.

共享时间:2023-07-19 难度:1 相似度:2
169524. (2024•铁一中学•高三上期末) 已知正四棱锥PABCD的底面边长和高都为2.现从该棱锥的5个顶点中随机选取3个点构成三角形,设随机变量X表示所得三角形的面积.
(1)求概率PX=2)的值;
(2)求随机变量X的概率分布及其数学期望EX).

共享时间:2024-02-27 难度:1 相似度:2
237830. (2018•铁一中学•高二下期中) 在2016年8月巴西里约热内卢举办的第31届奥运会上,乒乓球比赛团体决赛实行五场三胜制,且任何一方获胜三场比赛即结束.甲、乙两个代表队最终进入决赛,根据双方排定的出场顺序及以往战绩统计分析,甲队依次派出的五位选手分别战胜对手的概率如表:
出场顺序 1 2 3 4 5
获胜概率 p q
若甲队横扫对手获胜(即3:0获胜)的概率是,比赛至少打满4场的概率为
(1)求pq的值;
(2)求甲队获胜场数的分布列和数学期望.
共享时间:2018-05-28 难度:1 相似度:2

mnf@dyw.com

2021-06-23

高中数学 | | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 13
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
温馨提示
对不起!这是别人共享的试题,需要下载到自主题库后,可将该试题添加到白板
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!